Ultra High Performance Liquid Chromatography in the Contract Manufacturing Environment - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Ultra High Performance Liquid Chromatography in the Contract Manufacturing Environment
Ultra high performance liquid chromatography is advantageous in a contract laboratory because it is faster, more sensitive, and relies on smaller volumes of organic solvents than HPLC.

Pharmaceutical Technology
Volume 33, Issue 3, pp. 112-118

Figure 2: High performance liquid chromatogram and ultra high performance chromatogram for the same drug product.
The small particle sizes used in UHPLC greatly increase the theoretical plates and, thus, the separation power of the column. Small particle sizes also increase peak capacity, sensitivity, and resolution, which allows a much smaller column to accomplish the same separation as a much larger HPLC column. In addition, the linear velocity of the UHPLC column leads to much shorter chromatographic run times for similar separations. The smaller column and particle size also maintains this high linear velocity at flow rates lower than those in HPLC. Figure 2 consists of an HPLC and a UHPLC chromatogram for the same drug product. Figure 2 demonstrates what increased peak capacity brings to a chromatographic separation by moving from a 5-μm particle to a 1.7-μm particle. The HPLC method has an 80-min run time at a flow rate of 1 mL/min. The UHPLC method has an 11-min run time at a flow rate of 0.5 mL/min. The UHPLC chromatogram shows more peaks because of its better sensitivity. These parameters provide a more than 90% reduction in mobile phase consumption and waste generation.

UHPLC also can be advantageous in the method development phase. During the preformulation phase of product development, UHPLC decreases the time needed to develop a method adequate to test research batches. Five columns can be screened in four different mobile phases in less than 8 h. The entire method development process is considerably shorter, and the sensitivity of UHPLC is greater than that of HPLC, so the detection limit for impurities and degradants is lower. Method validation and routine testing can be completed in less time than for HLPC. For example, an HPLC method that has an 80-min run time would take more than 13 h to complete the analysis for one sample. The same analysis on UHPLC has an 11-min run time, and it would be completed in less than 1 h. Therefore, the turnaround time for experimental sample analysis is significantly shorter and allows the formulator to adjust the development strategies without interruption.

Even though the maximum pressure for the UHPLC system is 15,000 psi, columns age faster if they are run routinely at pressures greater than 12,000 psi. The column cost per analysis of UHPLC is about the same as that for HPLC. In addition, the internal diameters of the connection tubing are very small (0.02–0.004 in.) and are less forgiving than those of traditional HPLC systems. Therefore, highly purified reagents and solvents are recommended as well as better filtration of the samples and mobile phases.

Currently, many more vendors manufacture column chemistries for HPLC than for UHPLC. However, the number of companies offering sub-2 μm columns is growing. To date, at least four vendors offer UHPLC systems and the number of column chemistries is increasing.

The advantages of introducing UHPLC to a contract laboratory are a decrease in sample turnaround time for both manufacturing and product development, the use of less organic solvents, and a reduction in generated waste. Saving time and lowering cost without sacrificing quality can give a contract laboratory an advantage over its competitors while providing better service to its customers. It appears that UHPLC is here to stay.

Allison A. Aldridge is an R&D analytical manager at Mikart Inc., 1750 Chattahoochee, Atlanta, GA 30318, tel. 404.351.4510,

What would you do differently? Submit your comments about this paper in the space below.


1. A.D. Jerkovich, J.S. Mellors, and J.W. Jorgenson, "The Use of Micrometer-Sized Particles in Ultrahigh Pressure Liquid Chromatography," LC/GC North America 21 (7), 60–61 (2003).

2. Michael E. Swartz, PhD, Waters Corporation, "Ultraperformance Liquid Chromatography (UHPLC): An Introduction," Separation Science Redefined (May 2005), http://www.chromtographyonline.com/.

3. Eric S. Grumbach et al., Waters Corporation, "Developing Columns for UHPLC: Design Considerations and Recent Developments," Separation Science Redefined (May 2005), http://www.chromtographyonline.com/.

4. UHPLC: New Boundaries for the Chromatography Laboratory (Waters Corporation, Milford, MA, 2004).

5. M.W. Dong, "Ultrahigh-Pressure LC in Pharmaceutical Analysis: Performance and Practical Issues," LC/GC North America 25 (7), 31-35 (2007).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
Source: Pharmaceutical Technology,
Click here