Influence of Superdisintegrants on the Rate of Drug Dissolution from Oral Solid Dosage Forms - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Influence of Superdisintegrants on the Rate of Drug Dissolution from Oral Solid Dosage Forms
The authors examine common superdisintegrants (i.e., crospovidone Type A, crospovidone Type B, croscarmellose sodium, and sodium starch glycolate) with a set of poorly soluble drug actives and evaluate in vitro drug dissolution.


Pharmaceutical Technology


Experimental materials and methods


Table V
Materials. Table I lists the 13 poorly soluble active ingredients tested. Their aqueous solubilities were 2–2300 g/mL. The superdisintegrants studied were crospovidone Type A (Polyplasdone XL, International Specialty Products, ISP, Wayne, NJ), crospovidone Type B (Polyplasdone XL-10, ISP), croscarmellose sodium (Ac-Di-Sol, FMC Biopolymer, Philadelphia, PA), and sodium starch glycolate (Glycolys, Roquette, Tokyo). As outlined in the European Pharmacopoeia, crospovidone is available in different particle sizes. Crospovidone Type B has a smaller average particle size than crospovidone Type A.


Table VI
Tablet preparation. Tablets were prepared at the highest market dose using a direct compression (DC) or wet granulation (WG) process as considered appropriate through a review of the ingredients listed in the Physician's Desk Reference (PDR) and patent literature.


Table VII
For tablets prepared by direct compression, required ingredient quantities were weighed and blended to form a homogeneous powder mix. The blends were then compressed using appropriate tooling on a 16-station, instrumented, rotary compression machine (CMD4, Cadmach, Ahmdedabad, Gujarat, India). Advanced Instrumentation Monitor (AIM) software, (Metropolitan Computing Corporation, East Hanover, NJ) was used with the tablet press to determine the compression force required to yield tablets of approximately equal hardness for the various drugs used in the study. Formulations used to prepare atorvastatin and loratadine tablets by direct compression are shown as examples in Tables II and III, respectively.


Table VIII
For tablets prepared by wet granulation, weighed amounts of drug, diluent, and binder were premixed for 60 s in a granulator bowl (4M8, Pro-C-Ept, Zelzate, Belgium) at an impeller speed ranging from 1000 to 1200 rpm. Water was added at a predetermined rate, and after 120 s, the chopper was started (2300–2500 rpm). Granulation proceeded for 10 min. The impeller torque and the product temperature were monitored to determine the end point of granulation. The granules were sieved through specified mesh and dried in an oven at 60 C, to a final moisture content of 1.5–2% w/w, measured using a moisture balance (MA45, Sartorius, Goettingen, Germany). The required quantities of remaining ingredients were weighed and blended with the granules to form a homogeneous powder mix. The blends were then compressed as previously described. Formulations used to prepare efavirenz and ezetimibe tablets by wet granulation are shown as examples in Tables IV and V, respectively.


Table IX
Tablet evaluation . Tablet strength. The respective breaking forces of the prepared tablets were determined 24 h after compression using a hardness tester (TBH 310 MD, ERWEKA, Heusenstamm, Germany). Ten tablets from each batch prepared were tested for tablet breaking force, and the mean and standard deviation were calculated.


Figure 1 (All figures are courtesy of the authors)
Disintegration time. Respective disintegration times of the prepared tablets were measured in 900 mL of purified water with disks at 37 C using a TAR series tester (ERWEKA). Disintegration times of six individual tablets were recorded.




In vitro dissolution. The dissolution studies of the prepared tablets were carried out using US Pharmacopeia (USP) Apparatus 2 (Vankel VK, Palo Alto, CA). Dissolution profiling was performed with the medium recommended by USP or the US Food and Drug Administration for the respective drug. Dissolution profiling was also carried out in a medium developed in house and derived from the recommended media, capable of discriminating between the formulations. A peristaltic pump was coupled to a UV–visible spectrophotometer (Carry 50, Palo Alto, CA) to provide a continuous flow of the drug solution through a 1-cm cuvette. Samples were programmed to be analyzed at 5, 10, 15, 30, 45, and 60 min at the λ max of the respective drugs. The time required to achieve 80% drug release (t 80) was considered for comparing dissolution results. The t 80 was determined by fitting the dissolution data to a four-parametric logistic model using the Marquardt–Levenberg algorithm (Sigmaplot 9.0, SPSS, Chicago).


Figure 2
In this equation, y represents the cumulative percent of drug released, x is the time in minutes, "min" is the baseline of percent drug released at 0 min, "max" is the plateau of percent drug released at 60 min, and "hillslope" is the slope of the curve at transition center EC50.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
27%
Attracting a skilled workforce
30%
Obtaining/maintaining adequate financing
10%
Regulatory compliance
33%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here