Influence of Superdisintegrants on the Rate of Drug Dissolution from Oral Solid Dosage Forms - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Influence of Superdisintegrants on the Rate of Drug Dissolution from Oral Solid Dosage Forms
The authors examine common superdisintegrants (i.e., crospovidone Type A, crospovidone Type B, croscarmellose sodium, and sodium starch glycolate) with a set of poorly soluble drug actives and evaluate in vitro drug dissolution.

Pharmaceutical Technology


Figure 11
At a time when formulators are faced with increasing numbers of poorly soluble drugs, it has become very important to select superdisintegrants to maximize drug dissolution. A comprehensive study conducted to evaluate the effect of crospovidone, croscarmellose sodium, and sodium starch glycolate on the dissolution rates of poorly soluble drugs with varying aqueous solubility showed crospovidone Type B to provide the fastest rate of dissolution for poorly soluble drugs. The fact that tablet strength and disintegration times for the tablets containing each drug and all the superdisintegrant studies were similar showed that tablet hardness and disintegration did not influence dissolution. Crospovidone Type B has unique chemistry, particle size, and particle morphology that result in high interfacial activity, which significantly aids dissolution.


Figure 12
The authors wish to acknowledge the support and contributions of ISP's pharmaceutical research and development and analytical scientists in Hyderabad, India, and Wayne, New Jersey.

Jagdish Balasubramaniam is a manager of pharmaceutical research and development at International Specialty Products India, and Tim Bee* is a senior director of pharmaceuticals at International Specialty Products, 1361 Alps Rd., Wayne, NJ 07470, tel. 973.628.4148,

*To whom all correspondence should be addressed.


1. J.R. Johnson et al., "Effect of Formulation Solubility and Hygroscopicity on Disintegrant Efficiency in Tablets Prepared by Wet Granulation, in Terms of Dissolution," J. Pharm. Sci. 80 (5), 469–471 (1991).

2. J.K. Pandit, M.K. Tripathi, and R.J. Babu, "Effect of Tablet Disintegrants on the Dissolution Stability of Nalidixic Acid Tablets," Pharmazie 52 (7), 538–540 (1997).

3. A. Sakr, M. Bose, and A. Menon, "Comparative Effectiveness of Superdisintegrants on the Characteristics of Directly Compressed Triamterene Hydrochlorothiazide Tablets," Pharm. Ind. 55 (10), 953–957 (1993).

4. J. Balasubramaniam et al., "Effect of Superdisintegrants on Dissolution of Cationic Drugs," Dissolution Technologies 15 (2), 18–25 (2008).

5. USP 31–NF 26 (US Pharmacopeial Convention, Rockville, MD, 2008).

6. S.A. Qureshi, "Developing Discriminatory Drug Dissolution Tests and Profiles: Some Thoughts for Consideration on the Concept and Its Interperatation," Dissolution Technologies 13 (4), 18–23 (2006).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here