Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2 - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Initial Solvent Screening of Carbamazepine, Cimetidine, and Phenylbutazone: Part 1 of 2
The authors describe the importance of a rapid and an abbreviated screening strategy by initial solvent screening in 20-mL scintillation vials.


Pharmaceutical Technology
Volume 33, Issue 5, pp. 62-72

References

1. Y. Kawashima and C.E. Capes, "An Experimental Study of the Kinetics of Spherical Agglomeration in a Stirred Vessel," Powder Technol. 10 (1–2), 85–92 (1974).

2. Y. Kawashima and C.E. Capes, "Further Studies of the Kinetics of Spherical Agglomeration in a Stirred Vessel," Powder Technol. 13 (2), 279–288 (1976).

3. Y. Kawashima, M. Okumura, and H. Takenaka, "Spherical Crystallization: Direct Spherical Agglomeration of Salicylic Acid Crystals During Crystallization," Science 216 (4550), 1127–1128 (1982).

4. Y. Kawashima et al., "Preparation of Spherically Agglomerated Crystals of Aminophylline," J. Pharm. Sci. 73 (10), 1407–1409 (1984).

5. Y. Kawashima, M. Okumura, and H. Takenaka, "The Effects of Temperature on the Spherical Crystallization of Salicylic Acid," Powder Technol. 39 (1), 41–47 (1984).

6. Y. Kawashima et al., "Preparations of Agglomerated Crystals of Polymorphic Mixtures and a New Complex of Indomethacin-Epirizole by the Spherical Crystallization Technique," J. Pharm. Sci. 74 (11), 1152–1156 (1985).

7. A. Sano et al., "Particle Design of Tolbutamide by the Spherical Crystallization Technique II: Factors Causing Polymorphism of Tolbutamide Spherical Agglomerates," Chem. Pharm. Bull. 37 (8), 2183–2187 (1989).

8. Y. Kawashima et al., "Characterization of Polymorphs of Tranilast Anhydrate and Tranilast Monohydrate When Crystallized by Two Solvent Change Spherical Crystallization Techniques," J. Pharm. Sci. 80 (5), 472–478 (1991).

9. K. Morishima et al., "Micromeritic Characteristics and Agglomeration Mechanisms in the Spherical Crystallization of Bucillamine by the Spherical Agglomeration and the Emulsion Solvent Diffusion Methods," Powder Technol. 76 (1), 57–64 (1993).

10. Y. Kawashima et al., "Improvements in Flowability and Compressibility of Pharmaceutical Crystals for Direct Tabletting by Spherical Crystallization with a Two-Solvent System," Powder Technol. 78 (2), 151–157 (1994).

11. K. Morishima et al., "Tabletting Properties of Bucillamine Agglomerates Prepared by the Spherical Crystallization Technique," Int. J. Pharm. 105 (11), 11–18 (1994).

12. A.M. Garcia and E.S. Ghaly, "Preliminary Spherical Agglomerates of Water Soluble Drug Using Natural Polymer and Cross-Linking Technique," J. Control. Release 40 (3), 179–186 (1996).

13. A.H.L. Chow and M.W.M. Leung, "A Study of the Mechanisms of Wet Spherical Agglomeration of Pharmaceutical Powders," Drug Dev. Ind. Pharm. 22 (4), 357–371 (1996).

14. U. Teipel, T. Heintz, and H.H. Krause, "Crystallization of Spherical Ammonium Dinitramide (ADN) Particles," Propellants, Explosives, Pyrotechnics 25 (2), 81–85 (2000).

15. P. Szabó-Révész et al., "Development of Spherical Crystal Agglomerates of an Aspartic Acid Salt for Direct Tablet Making," Powder Technol. 114 (1), 118–124 (2001).

16. A.R. Paradkar et al., "Spherical Crystallization of Celecoxib," Drug Dev. Ind. Pharm. 28 (10), 1213–1220 (2002).

17. P. Szabó -Révész et al., "Crystal Growth of Drug Materials by Spherical Crystallization," J. Cryst. Growth 237–239 (part 3), 2240–2245 (2002).

18. Y. Kawashima et al., "Improved Flowability and Compactibility of Spherically Agglomerated Crystals of Ascorbic Acid for Direct Tableting Designed by Spherical Crystallization Process," Powder Technol. 130 (1), 283–289 (2003).

19. A.P. Pawar et al., "Crystallo-co-agglomeration: A Novel Technique to Obtain Ibuprofen-Paracetamol Agglomerates," AAPS Pharm. Sci. Tech., 5 (3), Article 44 (2004).

20. S. Bhadra et al., "Spherical Crystallization of Mefenamic Acid," Pharm. Technol. 28 (2), 66–76 (2004).

21. M. Maghsoodi et al., "Improved Compaction and Packing Properties of Naproxen Agglomerated Crystals Obtained by Spherical Crystallization Technique," Drug Dev. Ind. Pharm. 33 (11), 1216–1224 (2007).

22. J. Katta and ĺ.C. Rasmuson, "Spherical Crystallization of Benzoic Acid," Int. J. Pharm. 348 (1–2), 61–69 (2008).

23. X. Liu et al., "Single-Crystal-like Materials by the Self-Assembly of Cube-Shaped Lead Zirconate Titanate (PZT) Microcrystals," Langmuir 21 (8), 3207–3212 (2005).

24. A.S. Utada et al., "Monodisperse Double Emulsions Generated from a Microcapillary Device," Science 308 (5721), 537–541 (2005).

25. S. Gupta and S.P. Moulik, "Biocompatible Microemulsions and Their Prospective Uses in Drug Delivery," J. Pharm. Sci. 97 (1), 22–45 (2008).

26. K. Ujiiye-Ishii et al., "Methodological Features of the Emulsion and Reprecipitation Methods for Organic Nanocrystal Fabrication," Cryst. Growth Des. 8 (2), 369–371 (2008).

27. T. Lee and S.T. Hung, "Cocktail-Solvent Screening to Enhance Solubility, Increase Crystal Yield, and Induce Polymorphs," Pharm. Technol. 32 (1), 76–95 (2008).

28. T. Lee, C.S. Kuo, and Y.H. Chen, "Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen," Pharm. Technol. 30 (10), 72–92 (2006).

29. T. Lee, Y.H. Chen, and C.W. Zhang, "Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R,S)-(±)-Sodium Ibuprofen Dihydrate," Pharm. Technol. 31 (6), 72–87 (2007).

30. T. Lee and M.S. Lin, "Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum(III) (Alq3) by Crystal Engineering," Cryst. Growth Des. 7 (9), 1803–1810 (2007).

31. J. Alsenz and M. Kansy, "High Throughput Solubility Measurement in Drug Discovery and Development," Adv. Drug Deliv. Rev. 59 (7), 546–567 (2007).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
31%
Breakthrough designations
8%
Protecting the supply chain
42%
Expedited reviews of drug submissions
8%
More stakeholder involvement
12%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here