Charting a Pathway to Follow-On Biologics - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Charting a Pathway to Follow-On Biologics
Debates about science, manufacturing, and European regulations will shape the approval process for follow-on biologics in the United States.


Pharmaceutical Technology
Volume 33, Issue 6, pp. 36-42

Clinical trials

Many innovator companies and follow-on manufacturers agree that human clinical trials should be a requirement for the regulatory approval of biosimilars. Differences in cell lines and manufacturing processes, and biological drugs' inherent heterogeneity, are grounds for considering a follow-on biologic as a different product from the original drug. Clinical testing must include a robust evaluation of safety, confirm efficacy, and be carried out in the appropriate patient population, says Gail Wasserman, senior vice-president of development at MedImmune (Gaithersburg, MD).

When an innovator seeks approval for a process change, it is not necessarily required to perform clinical trials if analytical testing can establish the similarity of the pre-and postchange versions of its drug. Yet innovators argue that the standards should be different for a follow-on biologic because it is produced with different raw materials through a different process. A follow-on manufacturer does not have the innovator's historical and clinical data, they argue, and must develop its own.

Although sophisticated analytical techniques have emerged, they cannot fully characterize protein drugs' complex structure. The industry does not yet have the understanding to relate the analytical testing alone to clinical performance, says Wasserman. A minor change in a biological drug's structure could have significant clinical consequences, thus clinical testing should be required.

In addition, analytical testing cannot easily predict immunogenicity, says Jeffrey R. Mazzeo, biopharmaceutical business director at Waters (Milford, MA). For example, characterization methods can measure protein aggregation, but scientists cannot be sure whether aggregates will cause an immune response in the body. Nor can they predict whether aggregation will occur after an injection is administered. Although analytical testing can detect contaminants, it cannot readily identify and quantitate individual host-cell proteins, which could potentially be immunogenic, says Mazzeo.

For these reasons, the most definitive way to establish a biosimilar's safety, efficacy, and comparability to a reference drug is through clinical testing in humans. "Given where we are with testing today, there's no way around it," says Mazzeo. "They're going to have to do a head-to-head trial against the innovator product and demonstrate that the safety profile and the efficacy are the same."

The Biotechnology Industry Organization (BIO) asserts that Johnson & Johnson's (New Brunswick, NJ) experience with its Eprex drug demonstrates the need for clinical testing during the approval process for follow-on biologics. In 1998, the European health authorities asked the company to stop using human serum albumin (HSA) as a stabilizer for Eprex, which had been marketed for 10 years with no reports of immunogenicity problems. The company replaced HSA with polysorbate 80, which caused uncoated rubber stoppers in single-use Eprex syringes to leach plasticizers into the drug. The plasticizers stimulated an immune response that resulted in pure red-cell aplasia, a severe form of anemia (4).

"The Eprex case shows that one protein can be different from another in ways that cannot be detected in the laboratory but are seen only by the body's exquisitely sensitive immune system," says a statement on BIO's website. "If one change to a well-established complex manufacturing process, made by the manufacturer who has intimate knowledge of the process, can cause a problem with immunogenicity, surely the risk is even greater with an entirely new manufacturer and process—as will be the case with follow-on biologics" (5).

Although innovators and makers of follow-on biologics generally agree about the need for clinical testing, they disagree about the extent of testing that should be required. Follow-on manufacturers argue for a limited amount of clinical studies, but many innovators assert that full clinical-trial programs should be mandated because the drugs' inherent variability means that follow-ons must be considered new products, according to Mazzeo.

Yet some industry professionals are not convinced that clinical trials should be required for the approval of follow-on biologics. They argue that manufacturers of these drugs should not be held to higher standards than are innovator companies. Given that complicated biological drugs such as the influenza vaccine are approved every year in the US under the Public Health Service Act without clinical trials, they argue that requiring clinical trials for follow-on biologics would be unnecessarily burdensome to follow-on makers (6).

At most, some argue, the requirements for approving follow-on biologics should be the same as those for approving new biologics. The comparability standard that innovators meet to obtain approval for manufacturing-process changes could be applied to follow-on biologics. The standard has already been used to approve processes as different as a follow-on manufacturer's would likely be.

One example involves Biogen Idec's Avonex multiple-sclerosis treatment. A joint venture between Rentschler Technology (Laupheim, Germany) and Biogen Idec developed BG9015, a beta-interferon product, and tested it in clinical trials. After the joint venture failed, Biogen Idec developed the cell line for Avonex, also a beta interferon, and created a manufacturing process for the biological at a new facility in a different country. Biogen Idec submitted Avonex for FDA approval, relying on the clinical studies of BG9015. FDA approved the product after determining that Avonex was comparable with BG9015 on the basis of biological, biochemical, and biophysical analyses and pharmacokinetic studies in humans (7).

Because BG9015 was produced by a joint venture, Biogen Idec had access to manufacturing information and important intermediates required to make the product. The maker of a follow-on biologic, however, would seek to compete with the innovator and would not have this advantage (8).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
28%
Oversee medical treatment of patients in the US.
10%
Provide treatment for patients globally.
8%
All of the above.
46%
No government involvement in patient treatment or drug development.
8%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
Source: Pharmaceutical Technology,
Click here