Large-Scale Manufacture of Therapeutic Human Stem Cells - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Large-Scale Manufacture of Therapeutic Human Stem Cells
Large-scale manufacturing of human stem cells for therapeutic use is a leap in technology and science for the current biotechnology industry.


Pharmaceutical Technology
Volume 33, Issue 7, pp. 74-79

Robert J. Thomas* is a Research Councils UK academic fellow in biomanufacturing, and David J. Williams is the professor of healthcare engineering and director of the Research School of Health and Life Sciences, both at Loughborough University, Loughborough, UK, LE11 3TU, tel. +44 1509 227601,

*To whom all correspondence should be addressed.




What would you do differently? Submit your comments about this paper in the space below.

References

1. M.J. Lysaught, A. Jaklenec, and E. Deweerd, "Great Expectations: Private Sector Activity in Tissue Engineering, Regenerative Medicine, and Stem Cell Therapeutics," Tissue Engin., 14 (Part A), 305–315 (2008).

2. R. Archer and D.J. Williams, "Why Tissue Engineering Needs Process Engineering," Nature Biotechnol., 23 (11), 1353–1355 (2005).

3. C. Allegrucci, Y.Z. Wu, and A. Thurston, "Restriction Landmark Genome Scanning Identifies Culture-Induced DNA Methylation Instability in the Human Embryonic Stem Cell Epigenome," Human Molec. Gen. 16 (10), 1253–1268 (2007b).

4. D. Brafman et al., "Defining Long-Term Maintenance Conditions of Human Embryonic Stem Cells with Arrayed Cellular Microenvironment Technology," Stem Cells Develop., electronic publication ahead of print (2009).

5. D. Van Hoof, A.J. Heck, J. Krijgsveld, and C.L. Mummery, "Proteomics and Human Embryonic Stem Cells," Stem Cell Res., 1 (3), 169–182 (2008).

6. M.S. Bodnar, J.J. Meneses, R.T. Rodriguez, and M.T. Firpo, Propagation and Maintenance of Undifferentiated Human Embryonic Stem Cells," Stem Cells Develop., 13 (3), 243–253 (2004).

7. R. J. Thomas et al., "Manufacture of a Human Mesenchymal Stem Cell Population Using an Automated Cell Culture Platform," Cytotechnol., 55 (1), 31–39 (2007).

8. R.J. Thomas et al., "Automated, Scalable Culture of Human Embryonic Stem Cells in Feeder-Free Conditions," Biotechnol. Bioengin., 102 (6), 1636–44 (2009).

9. R.J. Thomas et al., "Automated, Serum-Free Production of CTX0E03: A Therapeutic Clinical Grade Human Neural Stem Cell Line," Biotechnolo. Letters, electronic publication ahead of print (2009).

10. R.J. Thomas, P.C. Hourd, and D.J. Williams, "Application of Process Quality Engineering Techniques to Improve the Understanding of the in vitro Processing of Stem Cells for Therapeutic Use," Jrnl. of Biotechnol., 136 (3–4), 148–155 (2008).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
27%
Attracting a skilled workforce
27%
Obtaining/maintaining adequate financing
14%
Regulatory compliance
32%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Source: Pharmaceutical Technology,
Click here