Novel Approaches for Oral Insulin Delivery - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Novel Approaches for Oral Insulin Delivery
The authors review various oral drug delivery systems that have been explored to increase patient compliance for insulin.


Pharmaceutical Technology
Volume 33, Issue 7

Commercial interest in oral delivery of insulin

Several companies have attempted drug delivery systems for proteins, including insulin. Although a commercial product is not yet available on the market, the current state of research spans from proof-of-concept studies to late-stage clinical studies (61).

The Orasome technology (Endorex Corp., Chicago, IL) involves encapsulation of proteins in liposomes. These lipo-somes are rendered resistant to harsh conditions of the gastrointestinal tract such as exposure to acidic pH, bile salts, and detergents by polymerization (62,63). Drugs are absorbed by the uptake of intact liposomes and are released in the tissues of the body.

Researchers at Emisphere Technology (New York, NY) are working with non-Acylated α-amino acids as carriers for the oral delivery of macromolecules (64, 65). They claim that upon oral administration of the carrier with the protein, the carrier forms a noncovalent association with the conformation of the protein that has a higher transport rate when compared with the physiological conformation. This complex dissociates after crossing the cell membrane.

The M2 system (Nobex Corp., Research Triangle Park, NC) is based on the attachment of low molecular weight polymers to specific sites in the protein. These polymer conjugates have been reported to improve stability and absorption when compared with performance of native protein (66).

Limitations of oral delivery of insulin

There are several barriers associated with the oral delivery of insulin:

Enzymatic degradation of insulin. Upon ingestion, insulin is subjected to acid catalyzed degradation in the stomach, luminal degradation in intestine, and intracellular degradation. The pancreatic enzymes that degrade insulin are trypsin and α-chymotrypsin (17). The cytosolic enzyme that degrades insulin is insulin-degrading enzyme (IDE) (67). Insulin is not subjected to enzymatic degradation by brush-border enzymes. The rate of degradation of insulin also depends on its associated state in solution. Insulin is a monomer at lower concentrations (<0.1 μM) and dimerizes in a pH range of 4-8 at higher concentrations. At concentrations >2 mM, the hexamer is formed at neutral pH. The associated state affects the rate of degradation of insulin. In the presence of bile salts, the rate of degradation may increase close to six times (68).

Intestinal transport of insulin. Evidence of active transport for insulin was negative (69). Morpho-cytochemical and biochemical evidence for insulin absorption was demonstrated in rat gastrointestinal tract (70, 71). This result was achieved by direct instillation of a solution of insulin into various parts of the gastrointestinal tract, followed by visualization with gold markers and immunoassay of the insulin in blood. No evidence exists for the transport of insulin by the paracellular route. Researchers found that insulin is absorbed to the apical plasma membrane and is internalized by endocytosis. The presence of insulin receptors has been demonstrated in enterocytes on both the apical and baso-lateral sides (72–74). Permeability studies of insulin across isolated segments of the gastrointestinal tract have been performed with an aim to evaluate the apparent permeability coefficient of insulin. The in vitro permeability studies also serve as screening tools to test the efficacy of absorption modifiers. Insulin permeability across the gastrointestinal tract has been studied by using isolated segments of various regions of the intestine. Table I lists the apparent permae-abilities coefficients of various regions of the gastrointestinal tract. These differences are attributed to the histological differences between various sites (75).

Dosage-form stability issues. The activity of proteins depends on the three-dimensional molecular structure of the protein. The dosage-form development of proteins may expose them to harsh conditions that may alter their structure. This will have implications in the efficacy and immunogenic response to the proteins. During dosage-form development, proteins might be subjected to physical and chemical degradation. The stability of insulin preparations has been documented in detail (76), and research data on solid-state stability of proteins in dosage forms have been reviewed recently (77). Proteins must be characterized for change in conformation, size, shape, surface properties, and bioactivity upon formulation processing. Changes in conformation, size, shape can be observed by use of spectrophotometric techniques, X-ray diffraction, differential scanning calorimetery, light scattering, electrophoresis, and gel filtration (78). Changes in surface properties can be detected with electrophoretic and chromatographic techniques, and changes in the bioactivity of proteins can be observed with bioavailability studies. The interference by formulation excipients also may be a factor when selecting the characterization technique (79). Size-exclusion chromatography with reverse-phase high-performance liquid chromatography was used to determine the formation of covalent insulin dimmers with trace amounts of high molecular weight transformation products after microencapsulating insulin in a mixture of poly(DL-lactide-co-glycolide) and poly(l-lactide) (80). Differential scanning calorimetry was used to differentiate denaturation endotherms of amorphous and crystalline insulin (81). X-ray diffractograms of insulin have been obtained with mixtures of lactose and mannitol to evaluate the effect of spray-drying on the crystalline changes of insulin (82).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
29%
Breakthrough designations
10%
Protecting the supply chain
43%
Expedited reviews of drug submissions
10%
More stakeholder involvement
10%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here