Novel Approaches for Oral Insulin Delivery - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Novel Approaches for Oral Insulin Delivery
The authors review various oral drug delivery systems that have been explored to increase patient compliance for insulin.

Pharmaceutical Technology
Volume 33, Issue 7

48. N.K. Raj and C.P. Sharma, "Oral Insulin: A Perspective," J Biomater Appl 17 (3), 183–96 (2003).

49. A.H. Krauland, D. Guggi, and A. Bernkop-Schnurch, "Oral Insulin Delivery: The Potential of Thiolated Chitosan-Insulin Tablets on Nondiabetic Rats," J Control Release 95 (3), 547–55 (2004).

50. F.A. Dorkoosh et al., "Peroral Delivery Systems based on Superporous Hydrogel Polymers: Release Characteristics for the Peptide Drugs Buserelin, Octreotide and Insulin," Eur J Pharm Sci 15 (5), 433-439 (2002).

51 . N.J. Kavimandan et al., "Synthesis and Characterization of Insulin-Transferrin Conjugates," Bioconjug Chem. 17 (6), 1376–1384. (2006).

52. H. Chung et al. "Self-Assembled 'Nanocubicle' as a Carrier for Peroral Insulin Delivery," Diabetologia 45 (3), 448–451 (2004).

53. A. Cilek et al., "A Lecithin-Based Microemulsion of rh-insulin with Aprotinin for Oral Administration: Investigation of Hypoglycemic Effects in Nondiabetic and STZ-Induced Diabetic Rats," Int J Pharm 298 (1), 176–85 (2005).

54. H.O. Ho, C.C. Hsiao, and M.T. Sheu, "Preparation of Microemulsions Using Polyglycerol Fatty Acid Esters as Surfactant for the Delivery of Protein Drugs," J Pharm Sci 85 (2), 138–143 (1996).

55. E.L. Ma et al., "In Vitro and In Vivo Evaluation of a Novel Oral Insulin Formulation," Acta Pharmacol Sin. 27 (10), 1382–1388. (2006).

56. W.A. Ritschel, "Microemulsions for Improved Peptide Absorption from the Gastrointestinal Tract," Methods Find Exp Clin Pharmacol 13 (3), 205–20 (1991).

57. M.E. Kraeling and W.A. Ritschel, "Development of a Colonic Release Capsule Dosage Form and the Absorption of Insulin," Methods Find Exp Clin Pharmacol 14 (3), 199–209 (1992).

58. A. Al-Achi and R. Greenwood, "Erythrocytes as Oral Delivery Systems for Human Insulin," Drug Dev Ind Pharm 24 (1), 67–72 (1998).

59. J. Varshosaz et al., "Development and Physical Characterization of Sorbitan Monoester Niosomes for Insulin Oral Delivery," Drug Deliv 10 (4), 251–62 (2003).

60. M. Trotta et al., "Solid Lipid Microparticles Carrying Insulin formed by Solvent-in-Water Emulsion-Diffusion Technique," Int J Pharm 288 (2), 281–288 (2005).

61. V. Aggarwal and M. Khan, "Current Status of the Oral Delivery of Insulin," Pharm. Technol. 76–90 (2001).

62. R. Langer, "Drug Delivery and Targetting," Nature 392 5–10 (1998).

63. H. Chen, V. Torchillin, and R. Langer, "Lecithin-Bearing Polymerised Liposomes as Potential Oral Vaccine Carriers," Pharm Res. 13 1378–1383 (1996).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here