Pediatric Formulations: Technical and Regulatory Considerations - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Pediatric Formulations: Technical and Regulatory Considerations
Leading experts share their perspective on the specialized requirments when developing a pediatric formulation and examine dosage forms that can be used for this patient class in this roundtable moderated by Patricia Van Arnum.


Pharmaceutical Technology


Oral thin-film delivery via a pacifier

By Theodore Clemente, Jr., vice-president of business development with MonoSol Rx.

The pediatric population represents one of the most challenging patient groups for administering drugs as compliance, proper dosing, and safety are difficult to manage with most standard modes of drug delivery. Thin-film dosage-form technology has become more prominent in pediatrics because it provides an accurate, convenient, and effective way to deliver medications to infants and young children. Thin films are easy to administer and fast-acting and does not require the patient to actively swallow or chew the dosage unit as is required with a liquid or chewable tablet. Thin film is a highly flexible drug-delivery technology. The strips can be manufactured to different sizes and tastes, can carry various drugs, and be applied to a host of surfaces within the oral cavity to enable the desired drug delivery outcomes.

An infant's natural propensity to suckle makes pacifiers and bottle nipples useful devices for administering medication and vitamins. MonoSol Rx has developed a patented technology for administering film dosage units to infants and young children using this approach.

The system relates to the delivery of drugs and/or vitamins contained in a thin film that is attached or placed inside of a pacifier or porous nipple member such as the tip of a baby bottle. Affixing a quick dissolving thin film into the porous nipple of a bottle or pacifier ensures that the active ingredient is immediately released into the oral cavity upon contact with saliva or liquid from the bottle. Delivery of a complete and accurate dose is confirmed as the thin film dissolves and disappears from the inside surface of the pacifier or porous nipple.


Figure 4: Example of thin film placed inside a pacifier or porous nipple member. (FIGURE 4 IS COURTESY OF MONOSOL RX)
The dissolvable thin film is attached to the inner surface of the nipple and held in place with retaining fingers (see Figure 4). The porous nipple member can possess holes or slits, which allow saliva to enter the inside of the nipple member and drug from the dissolved thin film to be suckled into the oral cavity. The pacifier or nipple member can be developed as a single-use application or as a reusable system.

Flavoring agents and/or coated drug particles can easily be added to the thin film for the purpose of taste-masking. This property enhances the likelihood that the infant or young child will continue to suckle the nipple member, further ensuring that the entire dose is consumed. In addition, a translucent material can be used for the nipple member, so the parent or caregiver can visually determine that the thin film has been completely dissolved and that the entire dose has been administered.

Distinct attributes of the thin-film dosage also make it advantageous for pediatric use without the pacifier or nipple member delivery method. Since the polymeric films are very thin (i.e., typically 50 to 150 microns), the technology ensures rapid disintegration due to a larger surface area for wetting and subsequent dissolution. It is virtually impossible for a film strip to be swallowed intact when placed on the tongue because the rapid wetting of the film generally causes adhesion to the tongue or other oral mucosal surface immediately. The film quickly dissolves and is ingested along with the saliva into the gastrointestinal tract.

Thin-film drug-delivery also offers the potential for reduction of dosing errors in a healthcare-provider setting because the dosage forms are usually supplied in printed individual pouches. The thin quick-dissolving film and low-dosage mass also allow for a shorter residence time in the oral cavity, which eliminates the possibility of the child spitting out the medication.

Thin film is likely to play a larger role in pediatric drug delivery in the future. Likely applications will include the delivery of prescription drugs, oral vaccines, nutritional supplements, and over-the-counter medications .

For more on this topic, see the online exclusives, "Waivers and Deferrals Under the Pediatric Research Equity Act" and "European Requirements for Pediatric Formulations"


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
27%
Breakthrough designations
9%
Protecting the supply chain
41%
Expedited reviews of drug submissions
9%
More stakeholder involvement
14%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here