Robots: The Next Phase in Pharmaceutical Automation - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Robots: The Next Phase in Pharmaceutical Automation
Robotic systems provide flexibility and efficiency (and they're not as difficult to use as you think). This article contains bonus online-exclusive material.


Pharmaceutical Technology
Volume 33, Issue 9

Drugmakers rely on automated equipment as a matter of course. Yet unlike the food and semiconductor industries, the pharmaceutical industry has been slow to adopt one particular form of automation: robots. The hesitation has partly resulted from a lack of expertise, the perceived high initial cost of robotics, and the misperception that robotic systems are too complex and require complicated programming. But current computer and peripheral systems have increased the capabilities and flexibility of robot technology, and some automation experts predict robots soon could be critical to drug manufacturers' efforts to reduce costs, ensure consistent product quality, and increase efficiency.

Design


Figure 1: Pick-and-place robotics template for various configurations.(
A robot is an automated system that incorporates a sensor, an intelligent decision-making algorithm, and an actuator, according to David Barrett, associate professor of mechanical engineering at Olin College in Needham, Massachusetts. Various types of robots have emerged, including selective compliant assembly robot arm (SCARA) robots, articulated-arm robots, and Delta robots that are useful in pick-and-place applications (see Figures 1 and 2).


Figure 2: A high-speed robot (ABB IRB 360 FlexPicker) picks and places vaccine droppers.(
Robots fall into two main categories, according to Ève Coste-Manière, independent research scientist and founder of Ève Coste-Manière Consulting. Arm robots mimic the structure of the human arm and are good for pick-and-place functions. Parallel robots comprise a platform mounted on "legs." These systems provide more precision (e.g., for insertion) than arm robots.

Generally a robot has at least four axes of motion. "Anything less than that is not really considered a robot or programmable mechanism," says Rick Tallian, a packaging expert at the robotics division of ABB. A robot that provides four to six axes of motion provides the flexibility of movement usually required in a packaging environment, for example.

A pharmaceutical manufacturer must pay particular attention to the robot's end effecter (e.g., its gripper), the part that will come into contact with the product. A company also must consider its sterility requirements and whether the robot will manipulate fragile containers. Engineering help is usually required to design a robot, particularly if it will be installed into a scaled-up process. ABB, for example, employs system integrators who can analyze a specific manufacturing application and develop a custom system around that application. In some cases, the system will be similar to another application so that the engineering content has been worked out, and the system costs less than a custom system.

Current applications

Laboratories. Many tests associated with research, discovery, and development entail repetitive tasks such as moving fluids between wells in a plate. Pharmaceutical laboratories now use robots to perform these tests because they are easy to automate using traditional pick-and-place machines. "Robots provide a high degree of consistency and accuracy executing the test protocols, while at the same time allowing the researcher to focus on higher-value tasks," says Walt Langosch, director of sales and marketing at ESS Technologies.

Equipment vendors have begun providing the industry with laboratory instruments that incorporate robots. For example, SciGene makes a laboratory bench that includes a robot that prepares DNA samples. The laboratory technician does not need engineering skills; he or she can use the robot by following simple instructions, says Brian Carlisle, president and CEO of Precise Automation.

Another example is Varian's auto-sampler, which includes a robot that picks up test tubes and loads them into a nuclear magnetic resonance imaging magnet (see Figure 2). The emergence of vendors such as Varian and SciGene has allowed the pharmaceutical industry to use robots more and more, says Carlisle.

Robots' success in pharmaceutical laboratories has encouraged companies to incorporate the machines into closely related production operations such as pilot and small-batch manufacturing lines. Other companies have made robots a part of their distribution systems.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Sandoz Wins Biosimilar Filing Race
Source: Pharmaceutical Technology,
Click here