Formulation and Evaluation of Famotidine Floating Matrix Tablets - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Formulation and Evaluation of Famotidine Floating Matrix Tablets
The authors investigated the effects of formulation and processing parameters on floating matrix-controlled drug-delivery systems.


Pharmaceutical Technology
Volume 33, Issue 10, pp. 60-70

Famotidine is a histamine H2-receptor antagonist. It is widely prescribed in the treatment of gastric ulcers, duodenal ulcers, Zollinger-Ellison syndrome, and gastroesophageal reflux disease in doses ranging from 10 to 80 mg (1). The low bioavailability (40–45%) and short biological half-life (2.5–4.0 h) of famotidine following oral administration favors the development of a sustained-release formulation. Gastroretentive drug delivery systems can be retained in the stomach, and thus can help improve the oral sustained delivery of drugs that have an absorption window in a particular region of the gastrointestinal tract. These systems facilitate continuous release of a drug before it reaches the absorption window, thus ensuring optimal bioavailability (2).

The oral treatment of gastric disorders with an H2 receptor antagonist such as famotidine or ranitidine in combination with antacids promotes local delivery of these drugs to the receptor of parietal cell wall. Local delivery also increases the bioavailability of the stomach-wall receptor site and increases the efficacy of drugs to reduce acid secretion. Hence, this principle may improve systemic as well as local delivery of famotidine, which would efficiently reduce gastric-acid secretion (3).

Several approaches can be used to prolong gastric retention time, including floating drug delivery systems (i.e., hydrodynamically balanced systems), swelling and expanding systems, polymeric bioadhesive systems, modified-shape systems, high-density systems, and other delayed gastric-emptying devices (4–10).

A dosage form that delivers famotidine in the stomach as a floating drug delivery system is one approach. A floating drug delivery system can be designed by incorporating at least one porous structural element that is less dense than gastric juice (11). Research also has been done in making floating (effervescent-type) drug delivery system for gastroretention using famotidine (12). A new type of multiparticulate floating drug delivery system consists of a highly porous carrier material (foam powder), drug, and polymer as low density microparticles (13–14). The material has a low density, large cavities interconnected by smaller pores (which give it a highly permeable structure), good compressibility, and good flowability. This article describes the development of gastroretentive matrix tablets of famotidine to increase therapeutic efficacy, reduce frequency of administration, and improve patient compliance. The study includes the use of low-density polymers for their high porosity and floating efficiency.

Materials


Table I: Compositions of the investigated tablets (all quantities are given in mg) .
The following materials were used: famotidine (lot 1160573, Torrent Pharmaceuticals, Chhatral, Kalol, India); low-density powder poly(styrene-divinyl benzene) copolymer [PSDVB] (lot 061117, Polygenetics, Los Gatos, CA); xanthan 150 (lot 8E0087K) and Klucel HXF (lot 4653, Cadila Pharma, Dholka, India); chitosan (lot 6843, Central Institute of Fisheries Technology, Cochin, Kochi, India); psyllium (lot 818, Atlas Industries, Shiddhpur, Gujarat, India); hydroxypropyl methyl cellulose K15M (lot 1240150) and hydroxypropyl methyl cellulose K100M (lot 1240225) (Torrent Pharmaceuticals); and sodium alginate, hydrochloric acid, dicalcium phosphate, talc, and magnesium stearate (SD Fine Chemicals, Mumbai, India). All ingredients were of analytical grade.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
26%
Attracting a skilled workforce
29%
Obtaining/maintaining adequate financing
14%
Regulatory compliance
31%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Source: Pharmaceutical Technology,
Click here