Challenges and Strategies for Implementing Automated Visual Inspection for Biopharmaceuticals - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Challenges and Strategies for Implementing Automated Visual Inspection for Biopharmaceuticals
The authors used a light-transmission-based static division system to detect particles of foreign contaminants in prefilled vials.

Pharmaceutical Technology


AVI of injectable drug products offers several advantages over manual inspection, including process consistency, speed, and potential cost effectiveness. This study investigated the role of machine settings, formulation properties, and fill configuration on the performance of an AVI. Higher spin speed and brake settings were shown to improve detection rates of the AVI system. Product properties such as viscosity, density, and surface tension affect the manner and duration of particle suspension in solution and thereby affect process performance. Other inherent solution properties such propensity to form air-bubbles and/or protein particles can also cause potential interference with the inspection system resulting in false rejections. Low fill volumes are also challenging because of the smaller inspection window. It is suggested that any equipment qualification or process characterization work should evaluate the system performance over a wide range of these process parameters and solution properties to arrive at a robust and consistent visual inspection process. DOEs can be conducted to study these parameters and any potential interactions. Formulation properties and fill configurations can be bracketed to minimize the number of experiments.


The authors wish to thank Aarti Gidh, Deborah Shnek, Erwin Freund, and Ed Walls in process development at Amgen for useful discussions and suggestions for this paper. We also thank Jeff Stephens, Ari Levy, and Damien Villanueva in clinical manufacturing at Amgen for providing valuable experimental support toward the execution of these studies.

Nitin Rathore*, is a senior scientist, Cylia Chen is a senior associate scientist, Oscar Gonzalez is a senior engineer, and Wenchang Ji is principal scientist, all in drug product and device development at Amgen, Thousand Oaks, CA,
, tel. 805.313.6393.

*To whom all correspondence should be addressed.


1. N. Rathore and R. Rajan, Biotechnol. Prog., 24 (3), 504–514 (2008).

2. T.A. Barber, Control of Particulate Matter Contamination in Healthcare Manufacturing (CRC Press, 1999).

3. C. Jones, presentation before the PDA Visual Inspection Forum (Bethesda, MD, 2007).

4. J.Z. Knapp and L.R. Abramson, Jrnl. of Parenteral Sci. and Technol., 44 (2), 74–107 (1990).

5. J.Z. Knapp, PDA Jrnl. of Pharma. Sci. and Technol., 75 (2), 131–147 (2007).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here