Do Visible Residue Limits Make the 10-ppm Carryover Limit Obsolete? - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Do Visible Residue Limits Make the 10-ppm Carryover Limit Obsolete?
The author discusses how the use of a visible residue limit has made the 10-ppm cleaning limit obsolete in many applications.


Pharmaceutical Technology
Volume 34, Issue 2, pp. 60-63

Visible residue limits

Fourman and Mullen described a visible residue limit (VRL) at approximately 100 μg per 2 2 in. swab area (6) or about 4 μg/cm2. Jenkins and Vanderwielen observed various residues down to 1.0 μg/cm2 with the aid of a light source (1). Neither offered details or data to substantiate the numbers and neither speculated about the use of visual limits in relation to the 10 ppm limit. LeBlanc questioned whether a VRL as the sole acceptance criterion could be justified (15).

Work at Merck's West Point, Pennsylvania, facility quantitated the use of VRLs for both pharmaceutical pilot plants and commercial manufacturing facilities (18, 19). The experiments included a series of active pharmaceutical ingredients (APIs), excipients, formulations, and detergents spotted onto stainless- steel coupons at decreasing concentrations until a group of observers were unable to detect the residues. The experimentally determined VRLs compared favorably to the health-based and carryover cleaning limits. For those compounds where the VRL was lower than the health-based and carryover limits, the VRL became the primary measure of equipment cleanliness.

Parameters explored included distance, viewing angle, ambient-light level, and residue composition. Established, acceptable viewing parameters for the vast majority of product residue on pharmaceutical manufacturing equipment were: < 10 ft, > 30, and > 200 lux respectively. The viewing angle proved to be the most critical factor when viewing cleaned equipment, particularly when viewing corners and other non-flat surfaces. VRL training continues to emphasize the importance of the viewing parameters.

Additional studies demonstrated the effectiveness of VRL use. Swab data compared favorably with VRL data as part of a validation study in a clinical packaging facility (20). A VRL study involving five APIs at three different sites demonstrated the ability to transfer VRL data between sites (21). A statistical analysis of all available VRL data (21) demonstrated that as technique improved, VRL data variability decreased. The analysis also concluded that the VRL of an API was representative of a given formulation.

VRLs have replaced swab analysis for several applications, including: the introduction of new APIs or equipment into a facility, routine use inspection after cleaning, periodic assessment of program effectiveness, technology transfer of cleaning methodology, campaign-length extension, cleaning-procedure optimization, and reduced cleaning documentation during routine cleaning.

Comparison of VRL to 10 ppm


Table I : Comparison of visible residue limit (VRL) data.
The 10-ppm limit in the author's facility equated to 100 μg/25 cm2 swab or 4 μg/cm2 based on the swab area and the solvent volume used to extract the residue form the swab. As VRL limits were established, they were compared to the 10-ppm swab limit for compounds for which the 10-ppm limit was lower than the health-based cleaning limit. The majority of the VRL data generated were well below 4 μg/cm2 (see Table I). Once the sample- preparation parameters and spotting technique were refined, 89% of experimentally determined VRLs were less than 2 μg/cm2 and 98% of the VRLs were below 4 μg/cm2 (see Table I).


Table II: Visible residue limit (VRL) data.
The VRL data for several commercial formulations are shown in Table II. All of the VRLs are well below the constant 4μg/cm2 limit. The data range from < 1.88 μg/cm2 and 1.45 μg/cm2 for Demser (metyrosine) and Emend (aprepitant) respectively, to <0.07 μg/cm2 for Sinemet (carbidopa-levodopa) and < 0.06 μg/cm2 for Aldomet (methyldopa). Differences between the 10-ppm adulteration cleaning limit and the VRL cleaning limit range from a factor of about 2 for Demser to a factor of almost 70 for Aldomet (see Figure 1).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
26%
Attracting a skilled workforce
29%
Obtaining/maintaining adequate financing
14%
Regulatory compliance
31%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Source: Pharmaceutical Technology,
Click here