Integrated Microfluidic LC-MS - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Integrated Microfluidic LC-MS
The authors describe a new microfluidic-based workflow that integrates and automates glycan cleaveage, purification, and chromatographic separation onto a microfluidic liquid chromatography–mass spectrometry chip for MS detection.

Pharmaceutical Technology
Volume 34, pp. s32-s39

Figure 1: Characterization workflows vary widely in terms of the techniques used and the time required to perform them. Even the fastest workflow is not fast enough to be practical for real-time process monitoring. LC-LIF is laser-induced fluorescence. LC is liquid chromatography. CE–MS is capillary electrophoresis–mass spectrometry. HPLC is high-performance liquid chromatography. MALDI is matrix-assisted laser desorption. (ALL FIGURES BUT FIGURE 3 ARE COURTESY AGILENT TECHNOLOGIES.)
Because sample labeling and cleanup is laborious and time consuming, direct label-free detection and identification by MS is a popular technique. MS also has the advantage of being able to provide exact mass data and identify very complex glycan profiles. Matrix-assisted laser desorption time-of-flight (MALDI–TOF) MS is one of the MS techniques often used. However, because MALDI–TOF-MS is not coupled to chromatographic separation, isomeric information is not obtained. Sample preparation for MALDI–TOF-MS involves deglycosylation, purification, acidification, and cation exchange to remove salts after deglycosylation, and takes about 6 h (see Figure 1) (7).

Hyphenated techniques have been developed to draw upon the combined attributes that labeling, chromatographic separation, and MS provide: improved detection sensitivity, isomer identification, and accurate mass information. For example, CE–MS methods enable faster separations as well as separation of isomeric species (8). HILIC and reverse-phase HPLC methods can be used in combination with electrospray MS detection. These methods also provide useful isomeric information (9, 10). Though these hyphenated methods provide powerful data, they often require 2–3 days to complete, thereby making them unsuitable for real-time applications.

Because porous graphitized carbon (PGC) chromatography is amenable to the separation of unlabeled glycans, it, in combination with nanoelectrospray MS, is emerging as the preferred hyphenated technique to separate and identify glycans without derivitization (11, 12). Unlike reverse-phase HPLC, glycans are readily retained on PGC without the need for a labeling step. However with this method, the glycans must be reduced to simplify their chromatographic profile. Without this lengthy reduction step, each glycan yields two peaks due to the anomeric carbon at the reducing end.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here