A Detail View of Single-Use Equipment Opportunities - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

A Detail View of Single-Use Equipment Opportunities
The authors propose increased use of single-use technologies in biopharmaceutical manufacturing to achieve operational excellence without compromising product quality.

Pharmaceutical Technology
Volume 34, pp. s16-s20

Environmental impact of single-use technologies

More often, biopharmaceutical companies are confronted with the need of utility reduction, recycling, and effective waste treatment (3). Several studies have evaluated the impact of single-use technologies applied in biomanufacturing scenarios. Single-use based facilities have the ability to reduce the overall environmental impact despite the creation of solid plastic waste, as demonstrated in a case study that compared stainless steel-based facilities to single-use-based facilities (1). A cost-of-goods model presented an even higher economic efficiency for single-use-based facilities.

Water, water-for-injection, and pharmaceutical-grade water are some of the largest cost and environmental contributors in stainless-steel plants. Clean-in-place (CIP) and steam-in-place (SIP) are major operating procedures in stainless-steel scenarios combined with a high consumption of energy, water, and chemicals. Implementing single-use technologies in these situations can reduce water usage between 50–80%, and energy consumption up to 30%, depending on the process and application (9).

Because single-use systems are presterilized, mobile, and considered closed systems, they can reduce space requirements and the need for large cleanroom floor space, which is a high-energy consumer. Aseptic-transfer ports separating higher-classified production areas from lower or nonclassified utility areas can easily be applied. Corresponding heating, ventilation, and air conditioning costs could be decreased and high-level production areas could be reduced a well due to relocation of the respective process steps into lower-classified or nonclassified areas.

Any discussion of the environmental impart of single-use technologies needs to consider that landfill and incineration are still the common method for plastic waste treatment, with energy savings realized through cogeneration techniques for the production of heat or electricity. Recycling of single-use assemblies is limited due to multilayer films of bags and different materials of additional single-use components (e.g., sensors, filters, connectors, and tubing).

The overall carbon footprint balance between stainless-steel and single-use facilities has been described by Sinclair et al as approximately 25% in favor of single-use facilities (9). However, a thorough analysis of example processes is still pending. For this reason, vendors are still calculating and evaluating the environmental differences between the two setups.


The biotechnology industry—like the pharmaceutical industry—has to continuously and rapidly reinvent itself. The patent-expiration cliff, increasing competition, and decreasing development pipelines pose indisputable threats. Single-use technology can help reduce this burden. The technology has already improved specific process steps (e.g., buffer and media prep and hold) and new trends in standardized, single-use unit operations promise even more cost reductions and enhanced product safety.

Although single-use technologies are not a silver bullet, they do open the door to new, innovative process and facility designs. Initiatives such as QbD and PAT are supported by closed, single-use systems and might accelerate their implementation. The environmental aspect also bodes well for single-use technologies.

With single-use unit operations surfacing, a complete, single-use process might not be far-fetched for the biopharmaceutical-manufacturing industry, certainly not for development processes with lower volume needs. The future for such processes appears bright and innovative.

Thomas Paust is global director of marketing, Detelv Szarafinksi is global program manager of FlexACT,and Christian Manzke is director of sales and marketing for Europe/Asia, all at Sartorius Stedim Biotech GmbH in Goettingen, Germany. Thorsten Peuker is global director of sales engineering at Sartorius Stedim Systems GmbH in Melsungen, Germany, and Maik Jornitz* is vice-president of marketing FT/FRT, at Sartorius Stedim North America, 5 Orville Dr., Bohemia, NY 11949.

To whom all correspondence should be addressed.


1. E. Cronin and et al., "Sustainability Single Use Technologies, Environmental Impact and Waste Management," presentation, BioPharm Services (October 2009).

2. A. De Palma, PharmaManufacturing (2006), http://www.pharmamanufacturing.com/articles/2006/163.html, accessed Feb. 17, 2010.

3. M. González, American Pharma. Rev. Nov. 15, 2009, http://americanpharmaceuticalreview.com/ViewArticle.aspx?ContentID=48, accessed Nov. 15, 2009.

4. ICH, Q8(R2) Harmonized Tripartite Guideline on Pharmaceutical Development, Step 5 version (2008) .

5. C. Jimenez-Gonzalez and et al., "An Executive Guide to Pharmaceutical Manufacturing Efficiency and the Effect of Environmental Legislation," (Rockwell Automation, SSB-WP001A-EN-E December 2009).

6. S. Mendevil and A. Burns, supplement to Bioprocess Int. 7 (1) 84–87 (2009).

7. G. Rao and et al., Biotechnology and Bioengineering 102 (2), 348—356 (2009).

8. C. Sandstrom, CEP 105 (7), 30—35 (2009).

9. A. Sinclair and et al., supplement to BioPharm Int. 4–15 (Nov. 2008).

10. J. Woodcock, AAPS Workshop (North Bethesda, MD, 2005).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here