Spherical Crystallization for Lean Solid-Dosage Manufacturing (Part II) - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Spherical Crystallization for Lean Solid-Dosage Manufacturing (Part II)
In Part I of this article, which appeard in the March 2010 issue, the authors describe their approach for constructing form spaces for carbamazepine, cimetidine, and phenylbutazone by initial solvent screening to evaluate the feasibility of spherical crystallization. Part II of this article discusses their findings.


Pharmaceutical Technology
Volume 34, Issue 4, pp. 88-103


Figure 1 (ALL FIGURES ARE COURTESY OF THE AUTHORS)
Only 10 solvent combinations from a total of 183 combinations produced decent spherical agglomerates of carbamazepine. Only 4 from a total of 100 solvent combinations produced decent spherical agglomerates of cimetidine and 4 of 136 solvent combinations produced decent spherical agglomerates of phenylbutazone. Water was present in 18 workable combinations as an antisolvent (i.e., derived from 10 + 4 + 4 = 18). This observation agreed with the many reported experimental conditions that water could be used as an antisolvent for nonionizable organic compounds (22–43). If only the solvent combinations with water as an antisolvent were considered, the total number of solvent combinations would have been reduced from 183 to 80 for carbamazepine, from 100 to 40 for cimetidine and from 136 to 80 for phenylbutazone. The criterion of using water as an antisolvent, therefore, was essential to accelerate the screening activities. The aqueous-solution environment induced the formation of crystal surfaces with hydrophilic functionalities, which helped to sustain the curvature of the hydrophobic solvents (44). This result may explain why most of the bridging liquids in the 18 workable solvent combinations were Class-4 chlorocarbon or Class-5 hydrocarbon solvents.


Figure 2
Solvent combinations for carbamazepine. The 10 solvent combinations of good solvent, antisolvent, and bridging liquid for carbamazepine were: 1,4-dioxane, water, and chloroform; acetonitrile, water, and paraxylene; acetonitrile, water, and chloroform; acetonitrile, water, and N,N-dimethylaniline; ethanol, water, and toluene; ethanol, water, and chloroform; ethanol, water, and N,N-dimethylaniline; methanol, water, and xylene; methanol, water and toluene; and methanol, water, and chloroform. All carbamazepine spherical agglomerates (see Figure 1) were freshly made as the dihydrate, which was the thermodynamically stable form in the aqueous system (45, 46). They were first oven-dried at 100 C for 4 h to become Form I before being subjected to characterization by a scanning electron microscope (SEM), whose high-vacuum system could be contaminated by the dehydration of the dihydrate form. Although the solubility of Form I carbamazepine was less than the solubility of Form III, it was advantageous to make Form I carbamazepine spherical agglomerates for several reasons (47). Form I transformed to dihydrate at a slower rate than Form III did in an aqueous environment, and the solubility of the dihydrate was known to be about 1.3 times less than the solubility of any of the anhydrous form (48). Also, the difference in the solubility values between Forms I and III was relatively small, and the area under the curve in bioavailability tests of the forms were in the order of Form I > Form III < dihydrate. Lastly, Form I was stable below 71 C (47).


Figure 3
Solvent combinations for cimetidine.The four solvent combinations of good solvent, antisolvent, and bridging liquid for cimetidine were: methanol, water, and n-heptane; methanol, water, and xylene; methanol, water, and paraxylene; and methanol, water, and toluene. All cimetidine spherical agglomerates (see Figure 2) were made of Form C crystals as verified by the FTIR spectrum with Form C characteristic bands at 1066, 1182, 1229, and 1347 cm-1 (5). Even though Form A is thermodynamically less stable than Form C under normal pressure, Form A was preferable for medicine because of Form C's extraordinarily poor bulk flowability for tableting (4, 6). The feasibility of producing Form C cimetidine spherical agglomerates, however, might have made the industrial tablet production of Form C cimetidine possible.


Figure 4
Solvent combinations for phenylbutazone. The four different solvent combinations of good solvent, antisolvent, and bridging liquid for phenylbutazone were: tetrahydrofuran, water, n-heptane; 1,4-dioxane, water, and n-heptane; acetonitrile, water, and n-heptane; methanol, water, and n-heptane. Spherical agglomerates (see Figure 2) of the first two cases were made of Form E crystals (see Figure 3), whereas the last two cases were made of Form A crystals as indicated by DSC. Form A showed only a single melting endotherm at 105 C for Form A, but the DSC thermogram (see Figure 4) exhibited the first endothermic peak at 92.5 C , which corresponded to the melting of Form E (3). This peak was followed by an exothermic peak at 95 C, which corresponded to the crystallization of Form E (3). A second endothermic peak at 104 C corresponded to the melting of Form A (3). Because the equilibrium solubility and the dissolution rate of the phenylbutazone crystal forms were in the order of Form C > Form E> Form D > Form B > Form A and Form C > Form E > Form B > Form D > Form A, respectively, spherical agglomeration might offer a way of tuning the dissolution profile of phenylbutazone by the change of polymorphism in addition to providing good bulk flowability.




Powder characteristics. The polymorphism of the API solids remained unchanged before and after the addition of a bridging liquid in the previoulsy described 18 solvent systems. Other powder characteristics of the spherical agglomerates from the 18 solvent systems such as the percent yield, the length-mean diameter, the apparent density, the population density, the sphericity, and the friability index were fully analyzed based on the sample weight and digital-camera photographs and were calculated according to Equations 1–6 as follows (22, 26, 40):


Table III
where D is agglomerate diameter (cm); D l is length-mean agglomerate diameter (cm); n is number of agglomerates of size D; W is the total weight of solids (g); (D l ) t is length-mean agglomerate diameter (cm) after 30 min, and (D l ) 0 is length-mean agglomerate diameter (cm) at the beginning of the friability test. The volume of a bridging liquid and the angle of repose were entirely determined by experiments. The sample sizes varied greatly from numerous powder-like agglomerates to one large aggregate as revealed clearly in Figures 1, 2, and 3. No replicate was made for each test at this point due to the limitation of time and materials. All experimental and calculated results are summarized in Table III.

Spherical agglomerates of carbamazepine dihydrate from an acetonitrile–water–paraxylene system, Form C cimetidine from a methanol–water–xylene system, Form E phenylbutazone from a tetrahydrofuran–water–n-heptane system, and Form A phenylbutazone from an acetonitrile–water–n-heptane system gave relatively high yields, high friability indices (i.e., greater strength) and low angles of repose (i.e., good bulk flowability) among the other spherical agglomerates produced by other systems. Therefore, they were first chosen as candidates for further scale-up or preformulation studies. Rotation in a cylindrical vessel alone did not encourage the formation of spherical agglomeration because a control experiment confirmed that spherical-shaped agglomerates could also be produced in a 500-mL sized crystallizer equipped with baffles and an overhead stirrer. The yield of each system was dependent on the compositional ratios of the solvent combinations. The yield can be easily raised during future process development by increasing the volume ratio of antisolvent to good solvent to values higher than 5:1.


Figure 5
Agglomerate structures . SEM images of the cross-section of all spherical agglomerates of carbamazepine dihydrate, Form C cimetidine, Form E phenylbutazone, and Form A phenylbutazone were categorized into four different typical modes. All primary crystals were needles and were: tangled with fibrils (see Figure 5(a)); randomly stacked together and linked by solid nodes (see Figure 5(b)); bundled together in parallel (see Figure 5(c)) and radiated from a center core; and jointed by solid bridges to form many A-shaped or H-shaped ladder structures (see Figure 5(d)) (49).

Because the volume ratio of water (i.e., the antisolvent) to good solvent was fixed at 5:1, the presence of a small amount of bridging liquid immiscible with water also would be immiscible with the saturated aqueous API solution and the good solvent as confirmed experimentally. Under a high speed of stirring, the bridging liquid was dispersed in the saturated aqueous API solution and the good solvent as tiny suspended droplets. These tiny droplets were randomly drawn to near the points of contact between the preformed needle-like primary crystals by interfacial tension. The fibrils, nodes and joints (see Figures 5 (a)–5 (d)) suggested that the dissolution of API would take place initially at the crystal–bridging liquid interface because of the relatively higher solubility power of the bridging liquid than the surrounding saturated high water content of the mother liquor. As the saturated high water content of the mother liquor diffused into the bridging-liquid region, recrystallization of the API occurred inside the liquid bridges.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
25%
Oversee medical treatment of patients in the US.
13%
Provide treatment for patients globally.
10%
All of the above.
43%
No government involvement in patient treatment or drug development.
10%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Source: Pharmaceutical Technology,
Click here