Spherical Crystallization for Lean Solid-Dosage Manufacturing (Part II) - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Spherical Crystallization for Lean Solid-Dosage Manufacturing (Part II)
In Part I of this article, which appeard in the March 2010 issue, the authors describe their approach for constructing form spaces for carbamazepine, cimetidine, and phenylbutazone by initial solvent screening to evaluate the feasibility of spherical crystallization. Part II of this article discusses their findings.


Pharmaceutical Technology
Volume 34, Issue 4, pp. 88-103

Conclusion

The form space constructed from the common organic solvents by initial solvent screening provided a systematic way of finding ideal combinations of a good solvent, an antisolvent, and a bridging liquid for spherical agglomeration on a miniaturized scale. The same working logic could be extended to other solvent techniques such as the spreading of cube-shaped particles, monodispersed double emulsions, microemulsions, and organic nanocrystal fabrication (50–53). Powder characteristics of spherical agglomerates such as percent yield, length-mean diameter, apparent density, population density, sphericity, friability index, and angle of repose served as a selection guide for narrowing down the final feasible solvent combinations for future scale-up. The initial solvent screening method made it possible to identify the right solvent combinations for spherical crystallization early in drug development. This strategy, therefore, increases the possibility of direct tableting without performing granulation.

Acknowledgment

This work was supported by a grant from the National Science Council of Taiwan, R. O. C. (NSC 98-2113-M-008-008-006). Suggestions from Jui-Mei Huang in DSC and Ching-Tien Lin in SEM, both at the National Central University's Precision Instrument Center and High Valued Center are gratefully acknowledged.

Tu Lee* is an associate professor, and Yan Chan Su and Hung Ju Hou were graduate students in the department of Chemical and Materials Engineering, and Hsiang Yu Hsieh was a graduate student at the Institute of Materials Science and Engineering, all at National Central University, 300 Jhong-Da Rd., Jhong-Li City 320, Taiwan, ROC, tel. +886 3 422 7151 ext. 34204, fax +886 3 425 2296,
.

To whom all correspondence should be addressed.

Submitted: Feb. 2, 2009; Accepted May 20, 2009.

References

1. T. Lee et al., Pharm. Technol. 34 (3), 72–75 (2010).

2. A.L. Grzesiak et al., J. Pharm. Sci. 92 (11), 2260–2271 (2003).

3. M.D. Tuladhar, J.E. Carless, and M.P. Summers, J. Pharm. Pharmacol. 35 (4), 208–214 (1983).

4. A. Bauer-Brandl, Intl. J. Pharm. 140 (2), 195–206 (1996).

5. B. Hegedüs and S. Görög, J. Pharm. Biomed. Analysis 3 (4), 303–313 (1985).

6. S. Sudo, K. Sato, and Y. Harano, J. Chem. Eng. Japan 24 (2), 237–242 (1991).

7. A.M. Tudor et al., Spectrochimica Acta 47A (9–10), 1389–139 (1991).

8. W.A. Bueno and E.G. Sobrinho, Spectrochimica Acta 51A (2), 287–292 (1995).

9. W.N. Richmond et al., J. Electroanalytical Chem. 448 (2) 237–244 (1998).

10. C.C. Chen and P.A. Crafts, Ind. Eng. Chem. Res. 45 (13), 4816–4824 (2006)..

11. A. Getsoian, R.M. Lodaya, and A.C. Blackburn, Int. J. Pharm. 348 (1–2), 3–9 (2008).

12. T. Lee and S.T. Hung, Pharm. Technol. 32 (1), 76–95 (2008).

13. T. Lee, C.S. Kuo, and Y.H. Chen, Pharm. Technol. 30 (10), 72–92 (2006).

14. G.J. Durant, J. Med. Chem. 20 (7), 901–906 (1977).

15. T. Hosokawa et al., Cryst. Eng. Comm. 6 (44), 243–249 (2004).

16. C. Rey-Mermet et al., Pharm. Res. 8 (5), 636–642 (1991).

17. R.A. Granberg and A.C. Rasmuson, J. Chem. Eng. Data 45 (3), 478–483 (2000).

18. A.Y. Huang and J.C. Berg, Colloids and Surfaces A: Physicochem. Eng. Aspects 215 (1-3), 241-252 (2003).

19. D. Rossetti, X. Pepin and S. J. R. Simons, J. Colloid and Interface Science 261 (1), 161–169 (2003).

20. E. Diaz-Herrera et al., J. Chem. Phys. 110 (16), 8084–8089 (1999).

21. H. Kahl, T. Wadewitz, and J. Winkelmann, J. Chem. Eng. Data 48 (6). 1500–1507 (2003).

22. Y. Kawashima and C.E. Capes, Powder Technol. 10 (1), 85–92 (1974).

23. Y. Kawashima and C.E. Capes, Powder Technol. 13 (2), 279–288 (1976).

24. Y. Kawashima, M. Okumura, and H. Takenaka, Science 216 (4550), 1127–1128 (1982).

25. Y. Kawashima et al., J. Pharm. Sci. 73 (10) 1407–1409 (1984).

26. Y. Kawashima, M. Okumura, and H. Takenaka, Powder Technol. 39 (1), 41–47 (1984).

27. Y. Kawashima et al., J. Pharm. Sci. 74 (11), 1152–1156 (1985).

28. A. Sano, Chem Pharm. Bull. 37 (8), 2183–2187 (1989).

29. Y. Kawashima et al., J. Pharm. Sci. 80 (5), 472–478 (1991).

30. K. Morishima et al., Powder Technol. 76 (1), 57–64 (1993).

31. Y. Kawashima et al., Powder Technol. 78 (2), 151–157 (1994).

32. K. Morishima et al., Int. J. Pharm. 105 (11), 11–18 (1994).

33. A.M. Garcia and E.S. Ghaly, J. Controlled Release 40 (3), 179–186 (1996).

34. A.H.L. Chow and M.W.M. Leung, Drug Dev. Ind. Pharm. 22 (4), 357–371 (1996).

35. U. Teipel, T. Heintz, and H.H. Krause, Propellants, Explosives, Pyrotechnics 25 (2), 81–85 (2000).

36. P. Szabó-Révész et al., Powder Technol. 114 (1), 118–124 (2001).

37. A.R. Paradkar et al., Drug Dev. Ind. Pharm. 28 (10), 1213–1220 (2002).

38. P. Szabó-Révész et al., J. Crystal Growth 237–239 (Part 3), 2240–2245 (2002).

39. Y. Kawashima et al., Powder Technol. 130 (1), 283–289 (2003).

40. A.P. Pawar et al., AAPS PharmSciTech. 5 (3), Article 44 (2004).

41. S. Bhadra et al., Pharm. Technol. 28 (2), 66–76 (2004).

42. M. Maghsoodi et al., Drug Dev. Ind. Pharm. 33 (11), 1216–1224 (2007).

43. J. Katta and A.C. Rasmuson, Int. J. Pharm. 348 (1–2), 61–19 (2008).

44. R. S. Abendan and J. A. Swift, Langmuir 18 (12), 4847–4853 (2002).

45. N. Rodríguez-Hornedo and D. Murphy, J. Pharm. Sci. 93 (2), 449–460 (2004).

46 F. Tian et al., J. Pharm. Sci. 96 (3), 584–594 (2007).

47. Y. Kobayashi et al, Int. J. Pharm. 193 (2), 137–146 (2000).

48. I. Katzhendler et al, J. Controlled Release 54 (1), 69–85 (1998).

49. Z. Wu et al., Cryst. Growth & Design 7 (12), 2454–2459 (2007).

50. X. Liu et al., Langmuir 21 (8), 3207–3212 (2005).

51. A.S. Utada et al., Science 308 (5721), 537–541 (2005).

52. S. Gupta and S.P. Moulik et al. J. Pharm. Sci. 97 (91), 22–45 (2008).

53. K. Ujiiye-Ishii et al., Cryst. Growth & Design 8 (2), 369–371 (2008).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
29%
Attracting a skilled workforce
27%
Obtaining/maintaining adequate financing
13%
Regulatory compliance
31%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Source: Pharmaceutical Technology,
Click here