Thinking Inside the Box - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Thinking Inside the Box
A modular approach to biopharmaceutical production could bring process flexibility, and contract manufacturing organizations are beginning to take notice.


Pharmaceutical Technology
Volume 34, Issue 5, pp. 34-40

The machine that makes the module


Xcellerex's FlexFactory platform includes enclosed unit operations that can be housed in an unclassified clean space.PHOTO: COURTESY OF XCELLEREX
Stainless-steel equipment. Biopharmaceutical production processes can be the same, whether a CMO uses a traditional or modular approach. Likewise, the equipment inside the modules can be much the same as it is in a traditional facility. A modular facility can incorporate familiar stainless-steel equipment. Likewise, a process skid of stainless-steel equipment can serve as a module. This equipment must be easily movable, and CIP and SIP operations should be set up as part of the modular manufacturing process. "It would actually be more efficient for stainless-steel equipment manufacturers to use modular designs so that their equipment allows for capacity increases simply by adding modules," says Ron Trudeau, vice-president of facilities-engineering services at Baxter Healthcare (Deerfield, IL).

One complication is that improved yields from high-producing cell lines may result in downstream product-pool volumes that are larger than upstream volumes, thus creating the need for an array of large tanks for process pools and buffers. "The solution is to apply a modular engineering approach and assemble these tanks as process modules that are still constructed and tested off-site as entire modules, but are disassembled for transport and installation in the facility on location," says Niels Guldager, senior consultant for bioprocess and technology of NNE PharmaPlan (Copenhagen).

Stainless-steel equipment alone is not the ideal approach to modular manufacturing, partly because it requires cleaning and related downtime. Also, to attain flexibility, a CMO must buy a lot of stainless-steel machines up front. "You may get the scale wrong—a lot of 10,000-L cell-culture vessels are standing idle today," says Eric Grund, senior director of biopharmaceutical applications at GE Healthcare (Waukesha, WI). Some stains-steel components will always be required, he adds, but they can be designed better to enable flexibility and ensure safety.

Single-use equipment. "It is the arrival of plug-and-play and ready-to-use components that is enabling most of the modular-manufacturing revolution," says Grund. Cleaning operations for reusable equipment entail the risk of cross contamination and, therefore, require development effort. Procedures must be tested and validated and require extra utilities. Disposable, presterilized equipment solves these problems by eliminating the need for cleaning and cleaning validation. In addition, disposable components enable rapid changeover between batches or products and make it easier to establish multiproduct facilities.

Disposable equipment is increasingly available in a unit-operation format. Companies often can install these units within six to eight weeks, which is much faster than they can install stainless-steel equipment, says Thomas Paust, global director of marketing integrated solutions at Sartorius (Göttingen, Germany). The caveat is that disposable components that contact the product must be tested for extractables and leachables, qualified, and validated.

Single-use components facilitate modular manufacturing more than traditional equipment because they enable modules to be small by reducing the amount of complex piping and resulting automation dramatically, says Xcellerex's Galliher. A module with less complexity often is simpler, more reliable, and requires less operator training and maintenance.

Disposable media-preparation devices, cell-culture vessels, and harvesting equipment already are available, making it possible for a CMO to establish a completely single-use upstream module. Downstream applications such as membrane chromatography for protein purification are being accepted and validated for commercial processes, too. Sartorius soon will introduce a single-use crossflow-filtration device that incorporates a disposable fluid path, pressure sensor, pressure valve, and flow sensor, says Paust.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
31%
Breakthrough designations
8%
Protecting the supply chain
42%
Expedited reviews of drug submissions
8%
More stakeholder involvement
12%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here