Skin Permeation of Rosiglitazone from Transdermal Matrix Patches - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Skin Permeation of Rosiglitazone from Transdermal Matrix Patches
The authors demonstrate that sustained-release delivery can help avoid the risk of sudden higher-blood concentration of a drug to avoid toxicity.

Pharmaceutical Technology
Volume 34, Issue 5, pp. 56-72

Figure 5
A drug-release study was conducted to understand the release pattern of a drug from a patch to the surface of the skin. This study which predicts the availability of the drug on the skin surface for skin permeation. Drug release from each formulation was carried out in a USP-type V, dissolution apparatus using 20% v/v PEG 400 in normal saline at 37 0.5 C (12). The cumulative amount of drug released per cm2 of patch was plotted against time for formulations I and II (see Figure 5). The true absorbance of the drug was measured by deducting the absorbance of the control sample from the absorbance of the test sample. The drug-release study showed that drug release sharply increased for 5 h to a mean cumulative amount of 1.5 mg/cm2 from both formulations. The release patterns and rates changed afterward, and the drug released in comparatively slower rates till the study was continued. At 72 h, drug release was about 2 mg/cm2 of patch for both formulations. The drug present on the patch-matrix surface and near the matrix surface initially released more drug. However, the duration of the release from the patches might be less because of the increased amount of time required for drug molecules to reach the patch surface through the entanglement of polymeric network of the patch matrix.

The in vitro skin-permeation study of a drug predicts the drug's in vivo skin-permeation performance. In the present study, in vitro skin permeation was carried out in a modified Keshary–Chein diffusion cell using cadaver skin. The cumulative amounts of the drug permeated through skin from each cm2 of patch area was about 500 μg in the first 2.5 h in both formulations. Then, the skin permeation of the drug in both formulations slowly increased with a similar permeation pattern until the 50-h point (see Figure 6). A similar drug-permeation pattern was maintained in Formulation II until 72 h. The trend varied for Formulation I, where the drug permeated more between 50 and 70 h, compared with the drug in Formulation II. Drug permeation was high during the first few hours. This observation may result from the faster release of the drug (see Figure 5) from the patch surface and near to the patch surface in the patch matrix. During the first 10 h, drug permeation was fast, then it gradually slowed. The slowdown could have resulted from the availability of the drug on the skin surface as depicted in the drug-release data (see Figure 5).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here