The Hour of the Particle - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

The Hour of the Particle
Is now the time for multiparticulates to shine as a controlled-release solution?

Pharmaceutical Technology
Volume 34, Issue 7, pp. 38-42

Making multiparticulates

Companies can choose among various techniques to manufacture multiparticulates. The simplest manufacturing technique is to layer the liquid drug onto inert spherical particles made of sugar or microcrystalline cellulose, says Orapin Rubino, director of formulation and product development at Glatt Pharmaceutical Services (Ramsey, NJ). In this strategy, which is appropriate for drug loads that are less than approximately 50% w/w, manufacturers use a Wurster column attachment on a fluid-bed processor.

Another common manufacturing method relies on extrusion and spheronization. First, operators force a blended, wet mass of drug and excipients through a porous plate with an extruder. Then the fragments are loaded onto a revolving disk with a chosen surface roughness, and the disk's rotation forms rounded pellets, says Oakley. Manufacturers can coat the multiparticulates or leave them uncoated and fill them into capsules. This method is appropriate for drug loads as high as 90% w/w.

Other common manufacturing techniques include direct pelletization and spray drying. Manufacturers also have developed advanced techniques such as spray congealing, but they are not yet widely used, says Rubino.

In hot-melt spray congealing, scientists melt a waxy polymer and mix an API into it, says Jochen Farrenkopf, group leader in pharmaceutical development of solid dosage forms at Abbott (Chicago). The API must be thermally stable enough to withstand the polymer's melting temperatures of 60–70 C. Droplets of this molten mixture fall onto a fast-rotating disc and are dispersed into fine particles that solidify as they travel, within several centimeters. These fine particles become spherical multiparticulates that can be encapsulated and used for modified release.

Minitabs can be manufactured relatively easily with special tooling using standard tablet presses and compression forces. At its contract-manufacturing facility in Ludwigshafen, Germany, Abbott uses a punch that incorporates 19 2-mm tips, says Farrenkopf. Using this tooling requires understanding and experienced operators. Because the 19 small punches have a lot of surface area, operators must set the tooling up thoroughly and be sensitive to its relatively high punch–die friction. Operators also must be careful not to break the 2-mm punches by subjecting them to too much compression. Although this manufacturing process requires care, "it's a pretty stable and forgiving technique that is feasible for long-term commercial manufacture," says Farrenkopf.

Machines that fill multiparticulates and minitablets into capsules are readily available to pharmaceutical manufacturers. IMA's (Bologna, Italy) Adapta encapsulator can fill as many as five ingredients into each capsule and check the dosing of each individual product. Operating the unit requires no special training or maintenance.

Putting multiparticulates to work

Because they are small and easy to swallow, multiparticulates are particularly suited to geriatric formulations. If a patient breaks a tablet in half so that he or she can swallow it more easily, the tablet's coating layer often is compromised and it can no longer provide controlled drug release. Multiparticulates avoid this difficulty because they are small enough for geriatric patients to swallow them easily. These pellets thus are appropriate for treating conditions that impair swallowing such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, says Oakley.

For similar reasons, multiparticulates also are suitable for pediatric formulations, for which prescription spending increased 10.8% in 2009 (1). Because multiparticulates are one of the best ways of enabling pediatric formulations, the number of drugs brought to market in this form will surely rise, says Farrenkopf.

Since multiparticulates enable good control of drug release, the dosage form is becoming more popular for drugs that treat chronic conditions. For these reasons, cardiovascular drugs and blood-pressure medicines could benefit from multiparticulates, says Castan.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here