Comparison of Superdisintegrants in Orally Disintegrating Tablets - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Comparison of Superdisintegrants in Orally Disintegrating Tablets
The functionality and performance of three types of commercial superdisintegrants were evaluated in the application of orally disintegrating tablets.

Pharmaceutical Technology
Volume 34, Issue 7, pp. 54-65

Results and discussion

Characterization of ODTs. Figure 2 is an overview of tablet disintegration time. The different graphs represent different disintegrant use levels, from 0.5% to 20%. Within each graph, the x-axis is the four disintegrants studied, the y-axis is the five compaction forces (4kN–12kN), and the z-axis is tablet disintegration time. In the first graph, a control sample without any disintegrant was included. The results indicated that Ac-Di-Sol disintegrates ODTs much faster than crospovidone (both PVP XL-10 and Kollidon CL-SF (crospovidone, BASF, Ludwigshafen, Germany)) and Glycolys (sodium starch glycolate, Roquette, Lestrem, France) at a low use level (≤2%). Crospovidone starts to perform at 5% and beyond. Glycolys is less potent than Ac-Di-Sol at low use level and less potent than crospovidone at a high level.

Figure 3: Tablet disintegration time at 2% disintegrant use level. Ac-Di-Sol is crosslinked croscarmellose sodium, PVP XL-10 is crospovidone, Kollidon CL-SF is crospovidone, and Glycolys is sodium starch glycolate.
In fact, at a low use level (0.5–2%), Ac-Di-Sol was the only disintegrant among the three types that could effectively disintegrate tablets at all compaction force ranges. Even when the use level increased to 2%, Ac-Di-Sol was still the only disintegrant that could provide ODTs that meet the USP-required 30 s disintegration time at all compaction force ranges (see Figure 3).

Figure 4: Tablet-crushing strength overview.
Figure 4 provides an overview of tablet-crushing strength for all disintegrants at different use levels (0.5%–20%) and compaction forces (4kN–12kN). Within each graph, the z-axis is the tablet-crushing strength. Results showed that disintegrants had no impact on tablet-crushing strength when the disintegrant use level was ≤ 5%, as the tablet-crushing strength was similar to the control sample at all compaction force ranges. However, tablet-crushing strength started to decrease when the disintegrant use level was ≥ 8%; the tablets became softer. In addition, tablet friability data (see Figure 5) further confirmed the tablet-crushing strength conclusions (e.g., tablet became friable if the disintegrant use level reached or exceeded 8%).

Figure 5: Tablet friability overview.
For each disintegrant, an optimal use level was identified. The optimal use level is defined as the lowest use level that can achieve the fastest disintegration time over the range of compaction forces studied for that particular disintegrant. The optimal use level for Ac-Di-Sol is 2%, for PVP XL-10 and Kollidon CL-SF is 5%, and for Glycolys is 5%. Figure 6 is a summary graph of the optimal disintegrant use level versus disintegration time for tablets with a 70–80N crushing strength. In general, at each disintegrant's optimal use level, 2% Ac-Di-Sol could disintegrate tablet at the same fast speed as 5% PVP XL-10 and 5% Kollidon CL-SF, and they all outperformed 5% Glycolys.

Figure 6: Tablet disintegration time comparison at optimal use level (tablet-crushing strength: 70~80 N).
Figure 7 is an overview of tablet stability in terms of its disintegration time. The x, y, z axis are the same as Figure 2. Bar graphs and cylinder graphs represent 24-hour and 4-month disintegration time data, respectively. Overall, disintegration time of all tablets slightly increased after 4 months of storage in ambient conditions within sealed plastic bags. However, no stability difference was found among different disintegrants. The slight disintegration time increase came from case hardening of the model mannitol tablet. All tablets became harder over storage (e.g., tablet-crushing strength increased for all tablets).

Figure 7: Stability study of tablet disintegration time: 24 h (bar graph) versus 4 months (cylinder graph).
Triangle mouthfeel study of ODTs. In terms of mouthfeel of ODTs that contain 2% Ac-Di-Sol versus ODTs that contain 5% PVP XL-10, 15 panelists provided the correct judgment out of the 34 panelists. This means 15 panelists picked out the correct odd sample, while the other 19 panelists picked out one of the two identical samples instead of the real, different one. According to the statistical table provided by Meilgaard et al. (10), a minimum of 17 correct judgments was required to establish significance at 95% probability level. A minimum of 19 correct judgments was required to establish significance at 99% probability level. The conclusion from this triangle mouthfeel study, therefore, was that there is no significant statistical difference between ODTs that contain 2% Ac-Di-Sol and ODTs that contain 5% PVP XL-10 in terms of mouthfeel.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here