Understanding The Requirements For Effective Nasal Drug Delivery - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Understanding The Requirements For Effective Nasal Drug Delivery


Pharmaceutical Technology Europe
Volume 22, Issue 9

Understanding the impact of product viscosity

An example of the data that can be obtained using laser diffraction is shown in Figure 2. Here, the output of a typical nasal pump spray has been measured during actuation for solutions containing increasing concentrations of PVP (PVP K90) up to and beyond the normal concentrations found in commercial products. PVP is commonly used to provide relatively high viscosity to improve product stability for suspension formulations. In this case, actuation of the spray pump has been controlled using a velocitycontrolled actuator (SprayVIEW NSx; Proveris Scientific, MA, USA), set to achieve a maximum velocity of 40 mm/s. Measurements were made 30 mm from the nozzle, at the centre of the spray plume, directly above the nozzle. This is within the range mentioned in the FDA guidance.2


Figure 2: Using the technique of laser diffraction to investigate the impact of solution viscosity on atomisation behaviour and droplet size.
The lower three profiles on Figure 2 are typical for a nasal spray event. During the initial formation phase, droplet size falls rapidly as flow rate through the spray pump increases. There is then a prolonged period of steady atomisation behaviour — the fully developed phase — during which droplet size remains relatively consistent; the FDA recommends that data from this period is used for statistically valid comparisons between different products. Towards the end of the spray event, flow rate through the spray pump decreases again to produce a corresponding increase in droplet size. This latter phase is referred to as the dissipation phase. The entire spray event is complete in less than 200 ms, underlining the importance of a rapid measurement technique.


The authors say...
The upper profiles (Figure 2) for 1.0 and 1.5% PVP concentrations, respectively, show the impact of increasing solution viscosity; there is an approximate doubling of viscosity as additive level is increased from 0.5 to 1.5%. These profiles indicate less than ideal behaviour and suggest that at higher viscosities the spray pump is unable to adequately atomise the formulation. With this particular nasal spray pump, flow rate through the device varies during actuation and reaches a peak towards the end of the profile. For the 1.0% solution, flow rate becomes high enough at around 100 ms after the start of actuation to achieve effective atomisation and a short-lived fully developed phase is observed. With the 1.5% solution, however, this point is never reached because the device is unable to supply sufficient energy to properly disperse the most viscous formulation.

Case studies

In the case studies below, which follow the principles of quality by design, the limits of pump performance are sought to fully understand the nasal spray performance. In the example above, just one parameter (formulation viscosity) is changing. More frequently, developers need to assess the impact of changes to both device and formulation to find a combination that delivers the required performance. One option may be to modify the way energy is released into the liquid during atomisation by selecting an alternative spray pump mechanism.

Modifying nozzle spray mechanism to control atomisation


Figure 3: Droplet size profiles obtained using the Equadel pump mechanism for the formulations shown in figure 2.
Figure 3 shows data for the same formulations as those in Figure 2, but this time using a spray pump mechanism that incorporates an energy storage mechanism (Equadel; Aptar Pharma Prescription Division, IL, USA). As the user depresses the spray pump, energy is stored within a spring and is released when the spray pump reaches a pre-determined hydraulic pressure. This has a pronounced impact on atomisation behaviour, with an obvious stable phase being observed even at high viscosities. In addition, the length of the stable phase is much longer, which may help to improve the efficiency of droplet deposition within the nasal passages.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology Europe,
Click here