Continuous Processing: Is The Pharma Industry Finally Coming Round To The Idea? - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Continuous Processing: Is The Pharma Industry Finally Coming Round To The Idea?

Pharmaceutical Technology Europe
Volume 22, Issue 9

Q. PTE: Are there any areas where batch processing still holds advantages over continuous processes? If so, in what scenario and why is it more beneficial?

Nepveux (Pfizer): Batch processing can have advantages in smaller volume/batch size applications where the clinical and commercial manufacturing supply chain is already in place and largely depreciated. Capital investment to develop and install continuous processing technology in these situations can be a barrier. Another area where batch can have an advantage is with low-volume, high-value products where the amount of product lost while reaching steady state (and shutting down) has significant value. This can be countered with engineering solutions that minimise or recycle startup/shutdown losses.

Schoeters (GEA): The concept of a batch will still be applied for some time in the pharmaceutical industry. However, there is no reason why modern continuous granulation and drying processes cannot be used as a batch process. Our current technology, for example, has no start-up or shutdown waste, so it can produce for instance 10 kg, 200 kg or 1000 kg, whatever the product requirement. From this viewpoint, we only see advantages of the continuous process compared with the batch process, because a continuous process is a process that runs in steady state, making it much easier to monitor and control the critical quality attributes (CQA). In a batch process, the product is in a continuous state of change, making it much more difficult to rectify any deviations from the CQAs. For existing processes originally developed on a batch system, the drivers to go for continuous processing will be mainly related to cost and quality improvements.

Weiler (SAFC): With reactions that involve solid formation and long reaction times, it is more preferable to use batch processes if safety reasons allow. In addition, simple and small-scale reactions often do not justify the initial costs for microreactor technology equipment, the redevelopment of processes or personnel training and recruitment.

Pharma processes tend to be multistep, so even though it may be possible to make some of these stages continuous, batch processing will still be a part of the overall process, as with SMB, where only the enantiomeric separation is continuous.

Whitfield (Inprotech): In general terms, batch processing has long been considered to offer greater flexibility and versatility, with less perceived regulatory risk when compared with continuous processing. Within pharma, continuous processing has retained a reputation for delivering higher efficiencies, improved control but allegedly presents less flexibility, more process complexity and greater compliance risk. Hence, batch processes still prevail where there is uncertainty about products and processes, i.e., a lack of complete understanding, or indeed sensitivity that continuous processing will reduce manufacturing flexibility. There has also been a notion that continuous processes do not scaleup effectively, again highly debatable, especially when considered against the wellknown uncertainty of batch processing scaleup. I believe tremendous technology advancements have been made over the last 4 or 5 years to address all of these concerns, including the lack of flexibility and ineffective scale-up, such that for many applications continuous processing could now be the first intent process of choice.

However, for some applications there are still some technological barriers to continuous processing, whereby batch systems are still considered to be the only proven solution. In API manufacturing, for example, continuous isolation and drying technologies are not yet proven, although progress is being made in such areas as spray drying. In Oral Solid Dose (OSD) Drug Product manufacturing, where the chosen manufacturing route is high shear wet granulation with fluid bed drying, a commercially viable solution (GEA Pharma Systems' ConsiGma) has become available only in the last 2 years, at a scale (low volume) to efficiently support the majority of pharmaceutical products. Even now, a fully continuous tablet coater at this required low-volume scale, is not available on the open market place, although the launch of such a system (O'Hara Technologies) is slated for later this year. At higher volumes, more typical for OTC medicine brands and some generics, all the required unit operations are available in a continuous processing format and have been for many years.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology Europe,
Click here