Investigating the Influence of Glycosylation on Protein Conformation and Dynamics - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Investigating the Influence of Glycosylation on Protein Conformation and Dynamics
The authors review and discuss the influence of glycans on the conformation of a representative IgG1 biopharmceutical using H/DX-MS as an analytical tool.

Pharmaceutical Technology
Volume 34, pp. s12-s17

Figure 2: A schematic representation of the workflow for a continuous labeling H/DX–MS experiment (arrows indicate the order in which each step in an H/DX-MS experiment is carried out). In the initial step, a protein solution is incubated at ambient temperature in its formulated buffer. The protein is then diluted ~20 fold with deuterated formulation buffer. The protein is then incubated and at predetermined time points, a sample is taken from the reaction and quenched by dropping the pH to ~2.5-2.6 and the temperature to 0 C. This quenched protein is then digested with an acidic protease (pepsin), and the resulting peptides are separated at 0 C under acidic conditions chromatographically before they are introduced into the mass spectrometer. The mass of each peptide is determined for each deuterium time point, and the deuterium incorporation is plotted versus time. If the structure of the protein is known, it can be plotted onto this structure, otherwise different data analysis and display formats can be used to interpret the H/DX–MS data.
Many factors influence H/DX such as temperature, pH, salt, and buffer composition (18). As a result, in a typical H/DX–MS experiment, the exchange reaction is carried out under conditions where these and other factors are well controlled (see Figure 2). The most common type of H/DX experiment is a continuous–labeling experiment where deuterium is added in 10– to 20–fold excess, and the reaction is allowed to incubate. As the reaction incubates, aliquots are removed over time (usually ranging from 10 s to more than 8 h) from the reaction and quenched to slow the labeling reaction. To quench the labeling, the pH is reduced to 2.5–2.6, where the hydrogen–exchange rate for a typical backbone amide is at a minimum (18). For the average backbone amide hydrogen, dropping the pH from 7.0 to 2.5–2.6 reduces the exchange by 4 orders of magnitude. In addition, lowering the temperature from 25 C to 0 C reduces the rate of exchange by another order of magnitude (18).

The insertion of a digestion step just after quenching (17), but prior to LC–MS (see Figure 2) cuts the protein into smaller pieces (peptides). During the digestion step, quench conditions must be maintained to preserve the deuterium label; therefore an acid protease (usually pepsin) is used for proteolytic digestion. After digestion, the peptic peptides are separated by reversed phase LC, and the mass of each peptide is measured by the mass spectrometer. Both digestion and chromatographic separation steps are carried out on–line. The reversed phase chromatography step not only functions to separate peptides, it also serves the important function of removing buffer salts and other excipients not compatible with MS.

Following the chromatographic separation, the peptides are analyzed by mass spectrometry, and the amount and location of the deuterium are determined (electrospray is most commonly used, although MALDI has also been used (21)). Typically, the protein and amino-acid sequence are known, and the resulting pepsin peptides are unambiguously identified by tandem MS. The solvent used in the digestion and chromatography steps are pure (100%) H2 O. As a result, deuterium that was incorporated in the protein starts to exchange back to hydrogen during these steps. To minimize this, and to supply enough time for analysis, the temperature of the quench, digestion, and separation steps is dropped, and the chromatography is done as quickly as possible under acidic pH conditions. At 0 C and pH 2.5–2.6, in a properly controlled experiment, only about 20%–30% of the deuterium is lost during analysis. If desired, control experiments can be performed to correct for this loss (17).

Using the deuterium uptake information, a comparison study can be conducted on a protein and its variant forms (i.e., a protein with and without different oligosaccharides). The main feature monitored in such comparisons is the difference in the locations and extent of deuterium incorporation as a function of time. These results provide indirect information concerning conformational changes in the polypeptide backbone of a protein as a result of a PTM. We have noted that protein deglycosylation can result in greater deuterium incorporation in some areas, and less in others.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here