Crucial Considerations in Monitoring Process Performance and Product Quality - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Crucial Considerations in Monitoring Process Performance and Product Quality
The author outlines key considerations for carrying out a structured approach to monitoring process performance and ensuring product quality.


Pharmaceutical Technology
Volume 34, pp. S38-S42

A systems approach


Figure 1: Framework example for monitoring process stability and capability. ALL FIGURES ARE COURTESY OF THE AUTHOR
It is generally agreed among industry that a systems-based approach enables operations to be more efficient and sustainable. Schematics of such systems are shown in Figure 1 for monitoring individual batches and in Figure 2 for monitoring batch-to-batch variation (5–7). The systems underlying Figures 1 and 2 have the following characteristics:
  • Data are periodically collected from the process. Pharmaceutical manufacturing processes are often monitored using 30–60 minute samples.
  • These data are used to monitor processes for stability and capability using control charts, process capability indices, analysis of variance, time plots, boxplots, and histograms.
  • The analysis identifies when process adjustments are needed to get the process back on target.
  • Records are kept on the types of problems identified. As significant problems are identified or problems begin to appear on a regular basis, the resulting issues and documentation are incorporated into process-improvement activities to develop permanent solutions.


Figure 2: Framework example for monitoring batch-to-batch variation over time.
Process improvement can be effectively completed using the define, measure, analyze, improve, control (DMAIC) problem-solving and process-improvement framework (5, 6). The following section describes the tools typically used in this framework.

Assessment tools

As a general principle, it is rare that a manufacturing process that is stable and capable will produce a product that is out of specification. The primary purpose of a process monitoring system is to address the question: Is this process capable of consistently producing product that is within specifications over time? The statistical analyses conducted to answer this question are briefly described below. These methods are generally accepted and well documented in the literature (4).

Control-chart analysis. A control-chart analysis is used to assess the stability of a process over time. The Shewhart chart has been widely used to assess process stability since the 1930s. Other types of control charts are also useful for monitoring processes (4).

A stable process is a predictable process; a process whose product will vary within a stated set of limits. A stable process is sometimes referred to as being in "a state of statistical control" (3, 4). A stable process has no sources of special-cause variation—that is, effects of variables are outside the process but have an effect on the performance of the process (e.g., process operators, ambient temperature and humidity, raw material lot).




The most commonly used indicator of special-cause variation is a process that has product measurements outside of the control limits which are typically set at X-Bar plus and minus three SD of the process variation for the parameter of interest (see Equation 1).

For example a process may be producing tablets with an average hardness of 4.0 kp and a standard deviation of 0.3 kp. The control limits are thus 4.0 +/–3(0.3) for a range of 3.1–4.9. Any tablet sample outside of that range is an indication that the process average may have changed and a process adjustment may be needed. Separate control limits are set for each parameter.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here