Quantitative Open-Access HPLC Analysis - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Quantitative Open-Access HPLC Analysis
The authors discuss the approach taken to develop a new calibration approach, its associated protocols, and how it can be used to calculate data.


Pharmaceutical Technology
Volume 34, pp. s6-s11

Continuous improvement

The integration of the Yieldaliser into the open-access HPLC platform has enabled chemists to generate impurity-profile and assay data simultaneously from a single analysis. The additional assay data obtained from the same sample preparation and chromatographic run is therefore generated with little additional cost. Users can perform the sample preparation in ~1 minute, thereby enabling results to be generated and emailed to their desks within 10 minutes of the sample preparation (i.e., when the sample queue is empty). A common open-access HPLC platform also allows chemists to generate Yieldaliser data that can support processes that have been transferred from the laboratory scale into larger production facilities regardless of where in the world the analysis is required.


Figure 5: Annual metrics collected using the Yieldaliser from GSK's Stevenage, Hertfordshire, United Kingdom, facility in 2009.
To continually improve the Yiedaliser, the software was written to enable ongoing collection of metrics, thereby monitoring system usage. At the GSK facility in Stevenage, there has been sufficient demand during the past eight years to ensure that four open-access systems are equipped to generate Yieldaliser data. Figure 5 displays the number and percentage of the different types of assay analysis performed by ~50 users across the four systems in 2009.

Figure 5 highlights the most frequent types of assay analysis performed by users at GSK's Stevenage site. More than 97% of the analyses focused on generating yield in solution using the typical protocol or dilute protocol (see Figure 2). The data also show that chemists that used the calibration tool throughout 2009 often did not need to determine the purity of isolated solids (more precise data is often required on solids and therefore generated by trained analytical chemists on dedicated HPLC systems).

Future plans

The examples documented by the authors demonstrate the use of the Yieldaliser within GSK's chemical development division. Implementation of an equivalent validated system, applicable to current good manufacturing/laboratory practice analysis, may help standardize operating methods for determining HPLC assays. Evolving quality by design approaches for analytical methods will potentially provide greater flexibility for changing methods that are already registered (2, 3). Improvement to the sample-preparation protocols is also under investigation (e.g., use of liquid handling devices that can better handle 20 l over a wide range of solvents) to automate further sample analysis and improve accuracy and precision. Lastly, automated methodology is being explored for automating fault detection and troubleshooting across the open-access HPLC platform (4–6).

Phil Borman* and John Roberts are managers in analytical sciences/chemical development at GlaxoSmithKline (GSK), Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom, tel. +44 1438 763713, fax +44 1438 764414,
. Barbara O'Reilly is a statistical programming analyst at Roche (Welwyn Garden City, UK). Robin Attrill is a manager in synthetic chemistry/chemical development at GSK in Stevenage. Ian Barylski is a manager and Keith Freebairn is a director, both in particle/process sciences and engineering/chemical development, at GSK in Stevenage.

References

1. J. Roberts et al., Amer. Pharm. Rev. 13 (2), 38–44 (2010).

2. P. Borman et al., Pharm. Technol. 31 (10), 142–152 (2007).

3. M. Schweitzer et al., Pharm. Technol. 34 (2), 52–59 (2010).

4. H. Eriksson and P. Larses, J. Chem. Inf. Comput. Sci. 32, 139–144 (1992).

5. T. Wessa et al., Organic Process R&D 4, 102–106 (2000).

6. L. Kaminski et al., J. of Pharm. and Biomedic. Anal. 51 (3), 557–564 (2010).

Editor's Note: This article is being simultaneously published in Pharmaceutical Technology Europe's October 2010 issue.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
22%
Attracting a skilled workforce
30%
Obtaining/maintaining adequate financing
11%
Regulatory compliance
37%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here