Capsule-in-Capsule Technology - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Capsule-in-Capsule Technology
The author outlines how to choose carriers and capsule shells according to dosage requirements and intended use. This article is part of a special Drug Delivery issue.


Pharmaceutical Technology
pp. s26-s29


Figure 2: Dissolution profiles for series 1 doses. The outer Labrafil (Gattefossé, St-Priest, France) capsule contains caffeine (caff.), and the inner polyethylene glycol 6000 contained nicotinamide (nic.). Results after 0, 2, 3, and 5 months' storage are shown. (FIGURE IS COURTESY OF THE AUTHOR)
Self-emulsifying drug-delivery systems also may be used. These systems generally contain an oil and a surfactant and also may contain a cosurfactant. The systems are suitable for compounds whose log P value is 2–4. For compounds with higher log P values, oils should be used. The related microemulsion products are homogeneous, clear fluid systems with small droplet size (i.e., 100–600 nm) that comprise an aqueous phase, an oily phase, a surfactant, and a cosurfactant. They form spontaneously on gentle mixing, are thermodynamically stable, and have low viscosity. The microemulsions include nonionics as surfactants, derivatives of propylene glycol or polyglycerols as cosurfactants, and vegetable oils or fatty acid esters as oily components. The proportions required for the various components may be established using pseudoternary phase diagrams to map out the microemulsion domain where the fluid remains clear. Typical applications are in increasing bioavailability, varying the release profile, improving stability, and handling potent or toxic compounds.

The semisynthetic and synthetic carriers referred to here are widely considered chemically inert, and their potential for interaction with the active is thought to be low. However, the chemical compatibility of materials is not to be taken for granted and should be the subject of standard initial compatibility testing. Even materials considered inert may be incompatible with certain actives. PEG, for example, is incompatible with drugs such as penicillin and aspirin.


Figure 3: Dissolution profiles for series 2 doses. The outer Labrafil (Gattefossé, St-Priest, France) capsule contains caffeine (caff.), and the inner polyethylene glycol 6000 coated capsule contained nicotinamide (nic.). Results after 0, 2, 3, and 5 months' storage are shown. (FIGURE IS COURTESY OF THE AUTHOR)
Standard restrictions apply to carrier selection. Typically, water, aqueous solutions, and glycerol quickly soften hard-capsule shells and should be avoided. Alcohol and low-molecular weight PEGs (e.g., PEG 400) dehydrate gelatine shells quickly, leading to gross embrittlement within short periods (i.e., 24 h to a few days, according to the formulation). Formulators may, however, consider the possibility of using a finely balanced content of, say, PEG 400 and water. Such formulations would require careful evaluation

The nature of formulations using complex thermosoftening excipients raises issues of possible changes in dissolution on storage because of short- or long-term polymorphic changes in the carrier These polymorphic changes could result in a decrease or increase in dissolution on storage, with possible associated clinical significance. Here, changes may arise with respect to both the active ingredient and the excipient and represent an important area of stability-test review for the dissolution of such products.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
28%
Oversee medical treatment of patients in the US.
9%
Provide treatment for patients globally.
9%
All of the above.
41%
No government involvement in patient treatment or drug development.
13%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Source: Pharmaceutical Technology,
Click here