Melt Extrusion: Shaping Drug Delivery in the 21st Century - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Melt Extrusion: Shaping Drug Delivery in the 21st Century
The authors provde a review of melt extrusion's evolution and applications in the pharmaceutical industry. This article is part of a special Drug Delivery issue.

Pharmaceutical Technology
pp. s30-s37

Figure 2: Dissolution of itraconazole solid-dispersion formulations: Sporanox (Janssen Pharmaceuticals) (▲), Hypromellose extrudate (■), Eudragit (Evonik) E100 extrudate (▼), and Eudragit (Evonik) E100-PVPVA64 extrudate (•).The dissolution (paddle method) was carried out in 500 mL SGFsp, at 37 C, 100 rpm. Error bars indicate the standard deviation. (FIGURE 2 IS REPRODUCED WITH PERMISSION FROM SIX ET AL (REF. 14) BY ELSEVIER)
Oral controlled release. The most traditional manufacturing technique for sustained-release dosage forms is compression such as roller compaction or tableting, which creates a matrix as the result of the formation of solid bridges. When subjected to a compression force, drug and excipient particles undergo transitional packing. With an increase in the compression force and densification of the formulation composition, deformation occurs at the points of contact of drug and excipient particles. Ductile materials such as microcrystalline cellulose undergo plastic deformation while brittle materials such as lactose undergo brittle fracture. Solid bridges are formed between particles when adjacent surfaces come into contact at the atomic level.

A TSE process has been successfully applied to a prepared sustained-release drug-delivery system (18). Commonly used polymeric drug-release retardants such as Eudragit RS, ethyl cellulose, and hydroxypropyl cellulose are thermal plastic materials that can be readily processed in a TSE. During the extrusion process, polymeric drug-release retardants are fed and transferred inside the heated barrel by corotating (or counter-rotating) twin screws. The polymeric materials soften as a result of the shearing effect of the rotating screws. The molten mass is then pumped through the die attached to the end of barrel by the screws and transformed into different physical shapes. The extrudate can either be directly shaped into a dosage form (19) or milled down to granules which can be further processed into final dosage forms with a traditional compression process (20).

The mechanism for matrix formation during the melt-extrusion process is different from that during the compression process. When processed above their glass-transition temperature and subjected to high pressure, thermoplastic components of the formulation function as adhesive binders inside the extruder and are intimately mixed with other components. Thermoadhesive characteristics of polymeric drug-release retardants are the mechanism for the formation of the matrix prepared using melt extrusion. Therefore, good compaction properties required for the matrix formation in a compression process are not necesssary. Finished products are expected to have lower porosity, higher tortuosity, and higher density in comparison with the dosage forms prepared by conventional compression processes. For a diffusion-controlled drug-delivery system, slower drug release is typically observed from materials processed using a melt extrusion process.

Strong interaction between individual components in the formulation can also occur during the extrusion process because certain materials are mixed at the molecular level. Zhang and McGinity have observed the formation of insoluble chlorphenamine maleate and Eudragit 4135F complexes due to hydrogen bond formation during the extrusion process (18). Exploitation of such interactions in combination with greater control of diffusive properties of the matrix can be exploited to provide unique sustained release properties. Additionally, abuse-deterrent and dose-dumping characteristics can be built into system using melt-extruded matrix technologies. In a recent study by Roth and colleagues, researchers used Soliqs' Meltrex technology to prepare ethanol resistant tablets of verapamil (21). Their research showed improved performance in vitro and in vivo.

Melt extrusion also has been used as an oral controlled platform for the production of minitablets and as a means to facilitate the compression of multiparticulates. In a study conducted by De Brabander et al., researchers manufactured minitablets using melt extrusion to prepare zero-order sustained-release tablets of ibuprofen that showed stability for a 12-month storage period (22). Schilling et al. also reported on the application of melt extrusion to prepare matrices containing film-coated multiparticulates (23). Under this design, the pellets were extruded with an external matrix agent and milled into a compressible granular powder which could be combined with extragranular materials to provide improved compression cushioning while allowing for controlled release. This technology could potentially allow for successful manufacture of tablets containing multiparticulates.

The literature shows overall that a melt-extrusion platform can provide many benefits for the production of controlled-release systems. The ability to manufacture conventional controlled-release systems while maintaining the potential for single-step dosage form manufacture presents unique opportunities for continued growth of this technology.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here