The Importance of Equivalence in the Execution and Maintenance of Validation Activities - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

The Importance of Equivalence in the Execution and Maintenance of Validation Activities
The author explains the idea of equivalence and describes how it can facilitate equipment validation.


Pharmaceutical Technology
Volume 34, Issue 12, pp. 43-46

Real-world examples


Approaches to bracketing in process validation
Based on the clear support that equivalence seems to have, whether explicit or implicit, one might assume that the concept is in widespread use. Regrettably, industry seems to be reluctant to use it to design validation programs. When industry uses equivalence, little public information about its application and utility is available. This article draws extensively on the author's experience because of the paucity of published information about applying equivalence to the execution of validation studies. The following list of projects used the equivalent performance of multiple pieces of identical equipment to reduce the overall validation effort.

Nine identical ovens. One company used nine ovens to depyrogenate vials of 14 sizes. If equivalence were ignored, the number of studies required to fully validate minimum and maximum loads would be 756 runs (9 14 3 2). Equivalence and bracketing (see sidebar, "Approaches to bracketing in process validation") reduced the number of runs to 126 (9 2 3 + 12 2 3). The entire effort comprised the largest and smallest vials in all ovens in both load sizes, plus single-minimum and maximum load-size runs of the other 12 vials in one or more of the other ovens. Equivalence reduced the workload by 83%.*

Paired terminal sterilizers. A company planned to use identical units to sterilize 15 vial sizes filled with 32 formulations. A total of 56 possible product–container combinations needed to be validated. The validation was expected to cover minimum, maximum, and intermediate-sized loads. Without equivalence, the number of required validation runs to be completed would be 1008 (2 56 3 3). Extensive sterilizer-qualification, cycle-development, and water-challenge (covering five different vial sizes) runs were used to demonstrate the sterilizers' equivalence and to support load-size variation across the breadth of containers. The initial product validation of the sterilizers consisted of 54 biochallenge runs selected to broadly confirm the acceptability of the process for several of the formulations. None of the product loads were tested in triplicate. These data and those from the water-challenge runs, in conjunction with D-value determinations, was used to obtain initial facility approval. This information was supplemented postapproval with physical monitoring that reaffirmed the physical parameters for the remaining products, containers, and load sizes. The overall reduction in workload achieved through the use of equivalence was approximately 95%.

Other examples. In addition to the applications described above, the author has participated in the following validation projects in which equivalence reduced the overall effort:

  • Terminal sterilization
  • Part sterilization
  • Clean- and steam-in-place of fixed and portable tanks
  • Vial and stopper washers
  • Tablet presses
  • Coating pans and columns
  • Granulation vessels
  • Shelf, fluid-bed, and freeze dryers
  • Compounding of oral and injectable solutions
  • Mills and sieves
  • Blenders
  • Filling, packaging, labeling, and inspection equipment.

The abovementioned items represent the author's experiences and are not intended to be all-inclusive. One might reasonably expect to demonstrate equivalence for other items of equipment not indicated above. The increased use of automated monitoring and control in contemporary equipment makes it easier to demonstrate equivalence.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
24%
Oversee medical treatment of patients in the US.
12%
Provide treatment for patients globally.
10%
All of the above.
44%
No government involvement in patient treatment or drug development.
10%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Source: Pharmaceutical Technology,
Click here