A Comparison of Three Extrusion Systems - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

A Comparison of Three Extrusion Systems
The authors conducted an experiment to determine the type of extrusion that provides the best productivity and pellet quality. This article contains online bonus material.


Pharmaceutical Technology
Volume 35, Issue 1

Conclusion

The design of experiments showed significant differences between the three extruders on all the responses studied. Overall, the radial system produced the worst results for the drug product considered. Dome extrusion provided the best results in terms of productivity, pellet morphology, and pellet dispersion, and the axial system provided the best results in terms of pellets' mechanical properties. Pellet properties appeared to be linked to extrudate characteristics.

Water quantity had a favorable effect on all responses. An increase in water quantity improved the results obtained with the least efficient extrusion system and had a smaller influence on results obtained with the more efficient system. Water quantity had less influence on the dome and axial systems, which already yielded good results. A system that gives high-quality pellets over a wide range of watercontent values is less sensitive to water and more robust than one which produces high-quality pellets in a narrow range of water content. For the development of a formulation by an extrusion-spheronization process, a narrow water-level range could cause problems, especially for the scale-up phase of development. For this reason, the axial and dome systems are more appropriate than the radial system. The extrusion speed had no significant influence on pellet properties, but improved extrusion productivity significantly.

This study showed the particular advantages of dome extrusion in comparison with the two other systems. The results were nevertheless obtained for fixed spheronization conditions, which could be more appropriate for dome extrudates. It would be interesting to compare the three extrusion systems by testing various spheronization conditions. Moreover, results were observed for a highly soluble drug product at a fixed concentration in the formula. Testing different solubilities and concentrations of drug substances also could give complementary information about the efficiency of the three extrusion systems. The influence of formulation and spheronization conditions will be described in Part II of this article.

Amélie Désiré* is a doctoral student at École des Mines d'Albi-Carmaux and Centre de Recherche et de Développement Pierre Fabre, 3 ave. Hubert Curien, 31035 Toulouse Cedex 01, France tel. +33 0 5 34 50 62 79, fax +33 0 5 34 30 32 72,
Bruno Paillard is head of solid dosage forms, and Joël Bougaret is director of the Pharmaceutical Technology Department, both at Centre de Recherche et de Développement Pierre Fabre. Michel Baron is head of the Pharmaceutical Engineering Department at école des Mines d'Albi-Carmaux, and Guy Couarraze is head of the Pharmaceutical Physics Department at the Université Paris Sud.

*To whom all correspondence should be addressed.

Submitted: Aug. 4, 2010. Accepted: Sept. 30, 2010.

References

1. R. Gandhi, C.L. Kaul, and R. Panchagnula, Pharm. Sci. Technol. Today 2 (4), 160–170 (1999).

2. K. Umprayn, P. Chitropas, and S. Amarekajorn, Drug Dev. Ind. Pharm. 25 (1), 45–61(1999).

3. N.R. Trivedi et al., Critical Rev. Ther. Drug Carrier Syst. 24 (1), 1–40 (2007).

4. C. Vervaet, L. Baert, and J.P. Remon, Int. J. Pharm. 116 (2), 131–146 (1995).

5. J.J. Sousa et al., Int. J. Pharm. 232 (1–2), 91–106 (2002).

6. L. Baert et al., Int. J. Pharm. 86 (2–3), 187–192 (1992).

7. K.E. Fielden, J.M. Newton, and R.C. Rowe, Int. J. Pharm. 81 (2–3), 225–233 (1992).

8. J. M. Newton, S. R. Chapman, and R. C. Rowe, Int. J. Pharm. 120 (1), 101–109 (1995).

9. L. Baert et al., Int. J. Pharm. 99 (1), 7–12. (1993).

10. C. Schmidt and P. Kleinebudde, Eur. J. Pharm. Biopharm. 45 (2), 173–179 (1998).

11. E. Nürnberg and J. Wunderlich, Pharm. Technol. Eur. 11 (3), 30–34 (1999).

12. K. Thoma and I. Ziegler, Drug Dev. Ind. Pharm. 24 (5), 401–411 (1998).

13. K. Thoma, and I. Ziegler, Drug Dev. Ind. Pharm. 24 (5), 413–422 (1998).

14. E. Le Doeuff et al., 6th International Conference of Pharmaceutical Technology (Paris, 1992).

15. D. Sonaglio, B. Bataille, and M. Jacob, Pharm. Acta Helv. 72 (2), 69–74 (1997).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
23%
Oversee medical treatment of patients in the US.
14%
Provide treatment for patients globally.
7%
All of the above.
47%
No government involvement in patient treatment or drug development.
9%
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here