Keys to Executing a Successful Technology Transfer - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Keys to Executing a Successful Technology Transfer
The authors highlight the need for a technology-transfer process that is efficient, cost-effective, and repeatable, stressing the importance of process understanding. Read this and other preferred organization articles in this special issue.

Pharmaceutical Technology
Volume 35, pp. s42-s46

This article is part of a special issue on Preferred Providers.

Pharmaceutical manufacturers conduct more technology transfers now than ever before, yet technology transfer remains far from a core competency in the industry today, according to a recent survey conducted by Tunnell Consulting. Looking at the technology-transfer practices of executives at 10 global pharmaceutical companies, the study found that most companies undertake more than 10 technology transfers per year—whether from development to commercial manufacturing or from one manufacturing site to another—and some execute many more. Yet despite the frequency of transfers, the survey results showed the following problems:

  • Corporate decision-makers make technology-transfer plans primarily on the basis of financial and marketing considerations, failing to take into account early enough in the decision-making process the effect that execution will have on the organization.
  • Senior management significantly underestimates the need for resources and scheduling because its members lack sufficient first-hand knowledge and input from the organization regarding the organizational requirements for supporting technology transfers at the sending and receiving sites, as well as for the numerous support functions that are integral to the process.
  • Once high-level decisions have been made, implementation is left in the hands of individual departments, functions, or sites with little, if any, high-level centralized oversight, control, or appropriate metrics.
  • The lack of early and effective coordination between the sending and receiving sites, or between development and manufacturing, is further complicated by the absence of clearly defined roles and responsibilities for individuals and teams, lack of open communications, and poor visibility of timelines, progress, and results.
  • The transfer runs into problems because a thorough and detailed assessment has not been conducted regarding the comparability between the sending and receiving sites' equipment, environments, and supply chains.
  • The participating organizations fail to clearly identify, define, and agree upon which standards and procedures will be followed while conducting transfers, including assurance that all required documentation will be completed in an accurate, timely, and compliant manner.
  • The organization fails to take into proper account the impact that technology transfers will have on functions, such as quality, regulatory, laboratory, and supply chain.
  • Poor process understanding, coupled with incomplete documentation (i.e., codification) of all the required process parameters, results in attempts to transfer products and processes not under a sufficient and defensible level of control, leading to poor manufacturability at the receiving site.

The adverse consequences of these common mistakes in the planning and implementation of technology transfer include budget and schedule overruns, disruption of both the sending and receiving organizations, compliance problems, excessive rejects and rework, slower time to market, and supply unreliability. In today's life-sciences business environment, companies can no longer afford such mistakes. They need a technology-transfer process that, like any process, is efficient, cost-effective, sustainable, and repeatable—a core competency that consistently produces maximum strategic impact. Although the components of such a comprehensive technology-transfer capability are many, they can be reduced to two essentials: an overarching technology-transfer framework and rigorous process understanding before transfer. Companies that achieve those two objectives will not only avoid the common mistakes in technology transfer, but also transform the process into a formidable competitive advantage.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here