Risk-Based Thinking in Process Validation - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Risk-Based Thinking in Process Validation
The author describes why statistical significance would impose an unreasonable burden on manufacturers.

Pharmaceutical Technology
Volume 35, Issue 2, pp. 68-76

A risk-based proposal

What is to be done with respect to the extent of the initial validation under FDA's new guidance? FDA's Risk-Based Compliance initiative of 2004 incorporates some general precepts about how firms should use risk in defining and controlling their operations (3). Risk-based thinking has perhaps the greatest potential influence on validation. Performance-qualification protocols, especially as they relate to sampling size, sample location, and acceptance criteria, incorporate risk decisions throughout. The number of lots required for validation should be established through a risk-based approach to determining the number of trials required. Table I includes an example of a risk-based methodology applied to production processes for the completion of FDA's Stage II validation evaluation.

Although three or more batches are preferred for initial release, the distribution of products is permitted for any product after the successful production of a single batch. For processes that are new to the producer or heavily modified, extensive design of experiments (DOE) support is required in preparation for concurrent release.

The numbers listed in Table I are based on the following assumptions:
  • These numbers are minimum requirements that could be increased when production demands and inventory charges permit.
  • Relevant analytical methods are validated for all raw materials, solvents, excipients, in-process tests, and finished goods before process validation.
  • Critical parameters for each process are predefined and controllable at scale-up.
  • Phase I DOE experiments have been completed successfully for all critical parameters.
  • Specifications and key characteristics are established and in compliance for all materials.
  • All equipment is in a state of current qualification.
  • Interim reports should be prepared for all materials released concurrently during the overall validation exercise.
  • A single batch can be concurrently released with adequate prior development.
  • In-process and finished-goods specifications are established based on documented experience rather than preconceived or arbitrary expectations.

The choices of specific numbers in Table I are arbitrary and based on the author's nearly 40 years of pharmaceutical-industry experience, which embraced all of these processes. In selecting the number of studies to perform in each instance, the author drew upon diverse sources for basic direction.

First, the process (i.e., process validation) and product are inseparably linked (4, 5). The process consists of the equipment chosen, the sequence of activities, the choice of materials, and the operating parameters. These items can be chosen independently to obtain the desired result. The result of the process is a product with unique characteristics (e.g., potency, uniformity, impurities, and moisture content). The product attributes depend on the process parameters used to make the product. The products' characteristics are the result of the process. If the process is altered in a meaningful way, the product key attributes also will be changed. Thus, the better defined the process, the more reproducible the result.

When a firm uses a process repeatedly, a substantial amount of useful data can be gathered for use when that same process is applied to different materials to produce a different product. For example, experience with tablet coating can be used for multiple products because the operating principles will remain constant, though the exact process parameters will differ. The amount of experience that a firm has with a particular process should be a factor in determining the number of Stage II validation batches necessary to demonstrate their capabilities.

Figure 1: Process understanding and risk. (FIGURE IS COURTESY OF THE AUTHOR)
Second, as is evident throughout the draft revision of the process-validation guideline, FDA expects manufacturers to acquire knowledge regarding the interaction between the independent process variables and the dependent product-quality attributes. The expectations for quality by design (QbD) are for the acquisition of knowledge regarding these relationships. The goal of the knowledge building is a minimization of risk in the commercial production that follows the developmental effort. Although this goal was stated explicitly in the guidance, an even clearer picture was provided in FDA's first presentations about process analytical technologies, and later in presentations about the QbD initiative (see Figure 1) (6).

Third, the draft guidance appropriately emphasizes the importance of sound development during Phase I as the basis for a validated commercial process. Although QbD has become increasingly common, it would be safe to say that the majority of current products and processes have not been developed in a rigorous manner. When Stage I is performed as described, the scale-up and commercial demonstration exercise that follows in Stage II of the guidance entails an expectation that the exercise is more likely to be successful because of the increased process understanding and product knowledge the firm has gleaned from its developmental efforts. Under those circumstances, an extended Stage II demonstration with numerous lots might be of less benefit than it would when the development effort was weaker. Under the draft guidance, fewer Stage II batches are required because the process is more fully defined.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here