Strategies in Parenteral Drug Manufacturing - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Strategies in Parenteral Drug Manufacturing
A technical forum moderated by Patricia Van Arnum

Pharmaceutical Technology
Volume 35, pp. s42-s45

Aseptic compounding and processing

Mathew Cherian, PhD, director of One 2 One Global Pharmaceutical Services at Hospira.


Figure 1: (aseptic compounding): An example of an aseptic manufacturing line. (COURTESY OF HOSPIRA)
Traditional sterile processing entails compounding in a Class C environment, followed by various process steps, culminating in sterile filtration into a Class A environment for filling. Aseptic compounding and processing offer an alternative to the traditional modality when processing highly potent and toxic sterile pharmaceutical products. Aseptic compounding and processing use an equipment train that has been precleaned, connected, hermetically sealed, and sterilized. The entire process is carried out under aseptic conditions. The active principle and excipient(s) are sterile-filtered in suitable solvents. Various process streams may be mixed, including solvent removal, solid-dispersions formation, homogenization, and finally the product filling (see Figure 1 [aseptic compounding]).

Aseptic compounding offers the advantage of being able to manufacture sterile products under the cleanest conditions used in the industry. By virtue of sterile filtration into a previously sterilized equipment train, the bioburden is extremely low, and particulate contamination attributed to environment and starting materials are obviated. In addition, no final filtration is necessary. For large-volume parenterals that are required to be terminally sterilized under US regulations, a lower F0 value, a measure of heat input, may be justified (1). This condition is especially helpful if the product is thermolabile.

Manufacturing considerations. Safe use of solvents for various process steps is helped by the hermetically sealed equipment train. Use of flammable and toxic solvents is made possible, including Class C solvents. There is no need to have explosion-proof facilities when handling flammable solvents, such as ethanol. Downstream steps, such as sparging or diafiltration, can be used to remove the solvents to the required level. If dry equipment is needed at one or more stages of the processing, dryness is easily achieved poststerilization by passing sterile filtered air through the equipment while the equipment is still hot. The equipment typically used for aseptic compounding makes it possible to have precise temperature control over the entire process. It also is possible to extend the processing time, when needed, as there is no risk of increased bioburden due to protracted holding and processing time.

Highly potent compounds increasingly are used in the pharmaceutical industry. These compounds may be hormones, cytotoxics, or certain biopharmaceuticals. Aseptic compounding and processing is the safest way to handle these compounds. If oxygen sensitivity of the active principle is of concern, aseptic processing offers a safeguard against oxidative damage during processing since inert gases, such as nitrogen, are safe and easy to use.

Aseptic compounding, however, presents its own challenges. The equipment train is more expensive, and generally speaking, the cleaning process can be more complex. All surfaces, valves, pumps, temperature, and pressure gauges need to be of sanitary design because of the high level of cleanliness required. Cleaning validation is more challenging because it may sometimes be difficult to determine the source of contamination in a long equipment train.

Typically, clean-in-place (CIP) and steam-in-place (SIP) techniques are used. SIP of long equipment trains can be difficult as condensing steam may not reach the entire length of the equipment. Multiple steam entry points may be required. If the process train involves a high pressure homogenizer, an artificial negative for bacterial presence is possible. Media runs are required to validate the aseptic state of the process.

In summary, aseptic compounding and processing are an effective processing method for highly potent and toxic sterile pharmaceutical products, especially when solvents are used in preparing them. No final filtration is necessary, the drug can be protected from oxidation, and it is possible to achieve greater flexibility in process parameters, such as temperature and holding time.

Reference

1. FDA, Guidance for the Industry: Sterile Drug Products Produced by Aseptic Processing–Current Good Manufacturing Practice (Rockville, MD, Sept. 2004).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
27%
Breakthrough designations
9%
Protecting the supply chain
41%
Expedited reviews of drug submissions
9%
More stakeholder involvement
14%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here