The Future of Downstream Processing - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

The Future of Downstream Processing
The author reviews the state of downstream processing and considers potential solutions, including the streamlining of full processes and borrowed technologies.

Pharmaceutical Technology
Volume 35, pp. s36-s41

Eyeing simpler technologies

The capacity crunch in downstream processing has been avoided or overcome in other industries by adopting simple and inexpensive technologies (16). In bulk-chemical, conventional pharmaceutical and food and detergent industries, expensive processing solutions, such as chromatography, would never be considered because the costs of implementation would not be sustainable in these high-volume, low-margin processes. This simple approach could be applied to biopharmaceutical manufacturing.

Several recent developments suggest that simpler technologies could find a niche in biopharmaceutical manufacturing, particularly in the early processing steps where the complex mixture of particulates and solutes have the most potential to foul expensive membranes and resins (16, 17). Tangential flow microfiltration, depth filtration, and (continuous) centrifugation are the current methods of choice for the clarification of the feed stream, and one or more of these processes may be employed in series to remove larger particulates until finally a polishing depth filter or dead-end filter can be used to remove fines and thus reduce feed stream turbidity (18). Efficient and inexpensive clarification becomes more challenging with higher-titer cell culture processes because these are characterized by a greater cell density and often a longer process time, resulting in a higher solids content, more particle diversity (size and physical properties) and—most challenging of all—a greater proportion of fine particles that escape coarse filtration. A technology that is widely used in the beverage industry and in wastewater processing is the use flocculants to link small particles together and create aggregates that are easier to remove. Flocculation is achieved using polymers that bind simultaneously to the surfaces of several particles through electrostatic interactions, creating larger particles that may sink under gravity, or may be removed more easily by centrifugation or filtration.

In the bioprocessing industry, flocculation has been used to help remove whole cells from fermentation broth, but more recently it has also been used to remove fine cell debris and proteins. A simple and inexpensive strategy recently applied in antibody manufacturing is the creation of a calcium phosphate precipitate by adding calcium chloride to a final concentration of 30 mM and then potassium phosphate to a final concentration of 20 mM. Precipitation traps cell debris in larger particles, allowing removal by centrifugation for 10 min at 340 X g and yields a clear supernatant with the recovery of ~95% of the antibody (19). Interestingly, this strategy also removes some soluble host cell proteins and nucleic acids. Flocculation is that it does not introduce any additional impurities to the feed stream because the flocculant is removed along with the aggregated particles.

Precipitation is widely used as a purification approach in the bulk-chemical industry, and given that precipitation can be induced by simple changes in the environment, such as varying the temperature or pH, increasing the salt concentration (i.e., salting out) or adding organic solvents, it should be easy to apply the same principles in bioprocessing (20). Precipitation has therefore been used to remove soluble impurities from the feed stream during antibody manufacturing, and these solids can then be trapped by filtration or pelleted by centrifugation leaving a clear feed stream relatively enriched for the target protein (20). In an innovative adaptation of this approach, the antibody can be precipitated under mild conditions and recovered from a collected pellet thus removing many contaminants in a single step (21). This is possible because the mild precipitation conditions allow the protein to be redissolved without loss of activity. Several groups have developed methods to precipitate antibodies in large-scale processes, and this method could replace Protein A chromatography in the long term (22, 23). Precipitation methods using n-octanoic acid are used for the removal of contaminants in at least two industrial antibody manufacturing processes (24, 25).

In the final purification steps, another traditional technology that is being considered for use in biopharmaceutical manufacturing is crystallization. Crystallization involves the separation of a solute from a supersaturated solution by encouraging the growth of crystals. The crystallization process involves the formation of a regularly structured solid phase, which impedes the incorporation of contaminants or solvent molecules, and therefore yields products of exceptional purity (26). It is this purity which makes crystallization particularly suitable for the preparation of pharmaceutical proteins, coupled with the realization that protein crystals enhance protein stability and provide a useful vehicle for drug delivery (27). Protein crystallization has been developed into a commercial technology for drug stabilization and delivery, and several current manufacturing processes involve crystallization including the production of recombinant insulin, aprotinin, and Apo2L (28).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here