Calling the Shots: Innovation in Controlled-Release Injectables - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Calling the Shots: Innovation in Controlled-Release Injectables
High demand could lead to innovation in controlled-release injectables.


Pharmaceutical Technology
Volume 35, Issue 7, pp. 36-41

In controlled-release formulations, the excipients used are biodegradable polymeric compounds, such as PLGA or polyethylene glycol, that are compatible with the Glide implant manufacturing process. By blending various grades of polymer, changing the ratio of drug to polymer, and manipulating process conditions, varied release profiles can be created with Glide formulations. On the other hand, if immediate release is required, the formulation would require quick-dissolving excipients, such as a single sugar or a blend of sugars that provide the physical strength required, but dissolve within seconds in the tissue. And although other excipients may be required to increase stability, such as for thermally labile biological macromolecules, formulations remain relatively simple.

The manufacturing process for the solid dosage form is also simple: the active ingredient and a blend of selected excipients are mixed together and passed through a standard twin-screw extruder, usually at room temperature to ensure that the active ingredient is not damaged. The spaghetti-like extrudate is then cut into individual doses that are pointed at one end and flat at the other. The drug implant is loaded into a sterile cassette and pushed directly into the tissue using a simple, reusable spring-driven actuator. The rate of degradation of the polymeric matrix within the tissue controls the release of the drug.

Potent drugs are good candidates for the company's solid-dose injection technology because they are administered in small doses that can be delivered easily as small implants. Beyond dosage size, Glide's technology does not seem limited by drug type. "We've got some very exciting vaccine data where we've shown the potential for better efficacy than a needle and syringe, and we've worked with several peptides and proteins," says Potter.

Looking to the future, Potter sees a potential market in the treatment of Type II diabetes because of Glide SDI's suitability to self-administered drugs. "Type II diabetics need a basal layer of insulin across the day. We can address Type II diabetes with our system, but different people need different levels, so we would need several dose levels for our formulations."

Conclusion

Scientists are refining current technologies and developing new means of controlling the release of injectable drugs. Patients seem likely to benefit from further innovations.

Reference

1. T.J. Merkel et al., Proc. Natl. Acad. Sci. USA 108 (2), 586–591 (2011).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Source: Pharmaceutical Technology,
Click here