The Influence of Hydro-Alcoholic Media on Drug Release - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

The Influence of Hydro-Alcoholic Media on Drug Release
The authors investigate the influence of hydro-alcoholic media on hydration and drug release from polyethylene oxide extended-release matrices.


Pharmaceutical Technology
Volume 35, Issue 7, pp. 50-58

Conclusion

Extended-release PEO tablets of the practically water insoluble drug gliclazide (30 mg) and freely soluble metformin HCl (500 mg) retained their hydrated structural integrity when exposed to 5% and 40% w/v ethanol solutions for up to 12 h. The matrices did not fail in hydro-alcoholic media. Small differences in drug release profiles were explained in terms of drug solubility in various media. The results of this study identified trends similar to those in previously published data for HPMC ER matrix systems.

Exposure of compacts of three different viscosity grades of PEO (Polyox 1105, 301, and Coagulant) to water or hydro-alcoholic solutions had shown gradual swelling and gelation without any disruption to the tablet integrity. The compact wet weight appeared to be only slightly lower in hydro-alcoholic solutions compared to water. The extent of their relative swelling was found to increase with increasing molecular weight of PEO from 900,000 Da to 5,000,000 Da. No significant difference in compact relative swelling was observed when MW increased further from 4,000,000 Da (Polyox 301) to 5,000,000 Da (Polyox Coagulant).

This study clearly indicates that PEO matrices produces consistent drug release in water and in hydro-alcoholic media with no signs of a potential dose dumping.

Marina Levina, PhD,* is senior manager, product development at Colorcon Limited,
, +44 (1) 322-627321. Dasha Palmer is product development scientist, Thomas P. Farrell, PhD, is director, product development, and Ali R. Rajabi-Siahboomi, PhD, is director of scientific affairs, all at Colorcon in Dartford, England.

*To whom all correspondence should be addressed.

Submitted: Feb. 17, 2011. Accepted: Apr. 5, 2011.

References

1. M. Levina and A.R. Rajabi-Siahboomi, J. Pharm. Sci. 93 (11) 2746–2754 (2004).

2. S.U. Choi, J. Lee, and Y.W. Choi, Drug. Dev. Ind. Pharm. 29 (10) 1045–1052 (2003).

3. H. Li, R.J. Hardy, and X. Gu, AAPS. PharmSci. 9 (2) 437–443 (2008).

4. R.L. Davidson, Handbook of Water-Soluble Gums and Resins (McGraw-Hill, New York, NY, 1980).

5. N.B. Graham and M.E. McNeil, Biomaterials. 5 (1) 27–36 (1984).

6. A. Apicella et al., Biomaterials. 14 (2) 83–91 (1993).

7. J.W. Moore and H.H. Flanner, Pharm. Technol. 20 (6) 64–74 (1996).

8. L. Yang, G. Venkatesh, and R. Fassihi, J. Pharm. Sci. 85 (10) 1085–1090 (1996).

9 F. Zhang and J.W. McGinity, Pharm. Dev. Technol. 4 (2) 241–250 (1999).

10. A.M. Razaghi and J.B. Schwartz, Drug. Dev. Ind. Pharm. 28 (6) 695–701 (2002).

11. S. Dhawan, M. Varma, and V.R. Sinha, Pharm. Technol. 29 (5) 72–79 (2005).

12. S. Dhawan, K. Dhawan and V.R. Sinha, Pharm. Technol. 29 (5) 82–96 (2005).

13. M. Levina, A. Gothoskar, and A.R. Rajabi-Siahboomi, Pharm. Technol. Eur. 18 (7) 20–26 (2006).

14. Handbook of Pharmaceutical Excipients, 3rd ed., R.C. Rowe, P.J. Sheskey, and M.E. Quinn, Eds. (Pharmaceutical Press, London, 2009).

15. L. Maggi, R. Bruni, and U. Conte, Int. J. Pharm. 195 (1-2) 229–238 (2000).

16. J. Siepmann and N.A. Peppas, Adv. Drug. Deliv. Rev. 48 (2–3) 139–157 (2001).

17. M. Levina, D. Palmer, and A.R. Rajabi-Siahboomi, Drug. Del. Tech. 10 (5) 18–23 (2010).

18. M. Levina, H. Vuong, and A.R Rajabi-Siahboomi, Drug. Dev. Ind. Pharm. 33 () 1125–1134 (2007).

19. National Health Service, "Statistics on Alcohol: England" (NHS, UK, 2009), http://www.ic.nhs.uk/pubs/alcohol09/, accessed Sept. 2010.

20. M.K. Serdula et al., Am. J. Prev. Med. 26 (4) 294–298 (2004).

21. W. Roth et al., Int. J. Pharm. 368 (1-2) 72–75 (2009).

22. B. Skalsky et al., presentation at the 34th Annual Meeting and Exposition of the Controlled Release Society (Long Beach, CA, 2007).

23. A. Makin and R. William, Q. J. Med. 93 (6) 341–349 (2000).

24. FDA, "FDA ALERT [7/2005]: Alcohol-Palladone Interaction," http://www.fda.gov/ (Rockville, MD, 2005).

25. H.M. Fadda, Y. AlBasarah, and A. Basit, presentation at the AAPS Annual Meeting and Exposition (San Antonio, TX, 2006).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here