Controlled Crystallization During Freeze-Drying - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Controlled Crystallization During Freeze-Drying
The authors discuss the preparation of lipophilic drug nanocrystals by controlled crystallization during freeze-drying.


Pharmaceutical Technology
Volume 35, Issue 8, pp. 58-62

Results and discussion


Figure 1: Dissolution profiles of tablets composed of a physical mixture (open symbols) and controlled crystallized dispersions (black symbols) of 35% w/w fenofibrate in mannitol. (n = 3–6; mean standard deviation). (FIGURE 1 IS COURTESY OF THE AUTHORS)
In-line Raman spectroscopy. The dissolution rate of the solid dispersion, which had been frozen on a precooled freeze-dryer shelf, was higher than the dissolution rate of the physical mixture (see Figure 1). Because the freeze-dried sample was fully crystalline (as determined by differential scanning calorimetry and X-ray powder diffraction, the difference in dissolution rate was likely caused by differences in drug crystal size. Therefore, the drug crystals in the controlled crystallized dispersion were smaller (probably in the nanosize range), than the drug crystals in the physical mixture (x50 = 13 m, determined by laser diffraction).

Although both components in the solid dispersion were fully crystalline, it was not clear at what point during the process the drug and matrix material crystallized. Therefore, in-line Raman spectroscopy was used to measure crystallization during the freeze-drying procedure. The Raman spectra clearly show peaks corresponding to water (208–226 cm-1 ), TBA (725–763 cm-1 ), δ-mannitol (865–895 cm-1 ), and fenofibrate (1580–1610 cm-1 ).


Figure 2: Raman spectra during freeze-drying of the rapidly frozen sample during freezing (15 and 75 min), after the temperature was increased to –25 C (500 min), and during drying (2963 min). The gray bars indicate the characteristic peaks of water (208–226 cm-1), tertiary butyl alcohol (725–763 cm-1), d-mannitol (865–895 cm-1), and fenofibrate (1580–1610 cm-1).
These peaks are clearly separated from each other (see Figure 2), so the crystallization of the individual components could be monitored throughout the process. To determine crystallization, the relative intensities of the individual peaks of fenofibrate, mannitol, and water were determined. An increase in the peak intensity indicates the formation of crystals of the corresponding component. Peak intensity cannot be used to determine crystallization of TBA because liquid TBA already shows a peak with a high intensity. Therefore, the width of this peak was used to determine the onset and end of crystallization (10). A narrowing of the peak indicates the start of the TBA crystallization.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
32%
Breakthrough designations
11%
Protecting the supply chain
37%
Expedited reviews of drug submissions
11%
More stakeholder involvement
11%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here