Addressing Elemental Impurity Limits with ICP–OES and ICP–MS - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Addressing Elemental Impurity Limits with ICP–OES and ICP–MS
This article discusses the benefits of ICP–MS and ICP–OES for the accurate detection of trace elements in pharmaceutical products, in compliance with the proposed USP chapters.


Pharmaceutical Technology
pp. s15-s18

Results


Figure 1: Inductively coupled plasma–optical emission spectrometry spike recoveries of test samples (with sample matrix) at various concentrations of the control limits. Acceptance criteria are 80–150%. (ALL FIGURES ARE COURTESY OF THE AUTHOR)
For ICP–OES, the results of the accuracy tests, in which a blank sample and a matrix sample (see Figure 1) were spiked with the elements of interest, showed that the spike recoveries were within the limits set by <233> (i.e., 80–150% of the spiked values). The six repeatability samples and intermediate precision (i.e., reproducibility) gave relative standard deviation (RSD) values of less than 3% and 16%, respectively, for all analytes. The results of the sample analysis (see Table I) revealed that all of the elements, with the exception of arsenic, were below the component limit. The level of arsenic exceeded the component limit by 100%, and if the maximum daily dose of the product were taken, the PDE would be exceeded by 300%.


Table I: Results of the inductively coupled plasma–optical emission spectrometry sample analysis with instrument and method detection limits.
The ICP–MS results demonstrated that most pharmaceuticals displayed elemental concentrations well below the specified limits. Figure 2 shows data for four of the medicines that had, in general, higher concentrations. All elements of interest were below the component limit in drugs A to D. Chromium and manganese were above the component limits in drug B, and although drug C did not exceed any of the USP limits, it contained a high level (i.e., 8 mg/g) of aluminum. Spike recoveries to determine the accuracy of the method fell within the acceptance criteria, even for a spike of 0.5 μg/g for all elements (except mercury at 0.01 μg/g).

Conclusion




ICP–OES and ICP–MS are recognized by USP as the preferred techniques for the analysis of trace elemental impurities in pharmaceutical products, in compliance with the requirements of the proposed USP <232> and <233>. The multielement analysis capabilities of ICP–OES and ICP–MS make them excellent tools for processing multiple analytes in large numbers of samples quickly and efficiently. The methods offer superior performance with simple sample preparation, fast analysis times, and superior sensitivity, compared with complex and less efficient sulfide precipitation-based detection methods. Overall, the methods offer exceptional robustness, performance, and accuracy, while improving productivity for multi-elemental measurements in complex matrices.

Matthew Cassap is a senior applications specialist at Thermo Fisher Scientific, 19 Mercers Row, Cambridge, UK, tel. + 44 1223 347 417,
.

References

1. USP, "USP Heavy Metals Testing Methodologies Workshop" (Rockville, MD, 2008), http://www.usp.org/pdf/EN/hottopics/2008-MetalsWorkshopSummary.pdf, accessed Sept. 30, 2011.

2. USP, "Hot Topics: Elemental Impurities" (USP, Rockville, MD, 2011), http://www.usp.org/hottopics/metals.html, accessed Sept. 30, 2011.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Source: Pharmaceutical Technology,
Click here