Catalyzing the Synthesis - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Catalyzing the Synthesis
Researchers develop various catalytic approaches for improving yield, purity, stereoselectivity, and process conditions.


Pharmaceutical Technology
pp. 44-50

Making acids behave like bases

A research team lead by Guy Bertrand, a distinguished professor of chemistry at the University of California at Riverside, recently reported on the use of boron-based compounds to build Lewis bases.

The researchers reported on the synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines. The neutral tricoordinate boron derivative acted as a Lewis base and underwent one-electron oxidation into the corresponding radical cation. These compounds were the parent borylene and borinylium, respectively, stabilized by two cyclic (alkyl)(amino) carbenes. Ab initio calculations showed that the highest occupied molecular orbital of the borane and the singly occupied molecular orbital of the radical cation were essentially a pair and a single electron, respectively, in the p(p) orbital of boron (7).

"The result is totally counterintuitive," said Bertrand, in an July 28, 2011, University of California at Riverside press release. "...But we have achieved it. We have transformed boron compounds into nitrogen-like compounds. In other words, we have made acids behave like bases."

Nitrogen- or phosphorus-based compounds are commonly used as ligands in catalysts. "The trouble with using phosphorus-based catalysts is that phosphorus is toxic and it can contaminate the end products," Bertrand said. "Our work shows that it is now possible to replace phosphorus ligands in catalysts with boron ligands. And boron is not toxic," he added. Researchers at Philipps–Universitat in Marburg, Germany, also contributed to the study.

References

1. J.N.H. Reek et. al., J. Am. Chem. Soc., online DOI: 10.1021/ja208589, Sept. 30, 2011.

2. S. Ritter, Chem. & Eng. News 89 (42), 13 (2011).

3. J.M. John and S.H. Bergens, Angew. Chem. Int. Ed. 50 (44), 10377–10380 (2011).

4. K.C. Harper and M.S. Singer, Science 333 (6051), 1875–1878 (2011).

5. F. Meyer nd C. Limber, eds., "Preface" in Organometallic Oxidation Catalysis (Springer, New York, 2007).

6. J.T. Yates, Jr., et al., Science 333 (6043), 736–739 (2011).

7. G. Bertrand, Science 333 (6042), 610–613 (2011).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
29%
Attracting a skilled workforce
27%
Obtaining/maintaining adequate financing
13%
Regulatory compliance
31%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Source: Pharmaceutical Technology,
Click here