The Impact Of Single-Use Systems - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

The Impact Of Single-Use Systems
Jerold Martin, senior vice president global technical affairs, at Pall Life Sciences, explains the importance and impact of single-use systems in sterile environments.

Pharmaceutical Technology Europe
Volume 23, Issue 12

The pharma industry is still heavily reliant on stainless steel. How are manufacturers integrating stainless steel and single-use components and what impact does this have on sterile environments?

In existing facilities, it is common for biopharmaceutical manufacturers to develop a “hybrid” system of both existing stainless steel and new single-use components. In build-outs or new facilities, particularly at small to moderate scale, more single-use is being introduced. At the larger scale, hybrid systems again dominate with large fermenters, chromatography columns and tangential flow filtration (TFF) systems continuing in stainless steel, while buffer and intermediate/final product hold tanks and filters are introduced as single-use systems. These hybrid systems will be used in large volume production facilities for quite some time, particularly in the downstream area despite progress made in operation technologies such as single-use TFF. Most biosimilar production today is focused on large volume drugs where stainless steel will still predominate, especially for large bioreactors and chromatography columns. In filling areas, however, we are seeing a lot of interest in single-use formulation and filling systems, but we have to take into account the large installation base of stainless steel filling equipment.

Functionally, manufacturers integrate stainless steel and single-use components or systems using linking technologies that are typically steam sterilisable (“steam-to” or “steam-through” connectors). The linking technology is steamed with the stainless portion of the process. Then the single-use flow path (which is typically pre-sterilised by autoclave or gamma irradiation) is opened to the stainless portion.

What are the current hurdles to the increased use of single-use systems in aseptic environments? What is the regulatory perspective?

Regulatory requirements are spelled out in existing GMP documents: process equipment and bulk drug product containers must not adversely affect final drug product quality or safety. Drug manufacturers must demonstrate that single-use systems used in aseptic environments do not introduce leachables, particles or microbes to the drug product that could compromise the product or patient safety. Hurdles include understanding how supplier extractables data, when suitable, can be applied to assess potential toxicity of leachables, while minimizing or even eliminating the need for additional testing, and how and when additional leachables testing should be applied. Drug manufacturers also need to better understand how to apply extractables and leachables data in the context of final dosage levels and understand potential toxicological impact (or, more commonly, substantiate the absence of toxicity above established safety threshold levels). Microbial safety (i.e., sterility) is ensured by validated sterilisation using gamma irradiation, but drug manufacturers need to know what supplier documentation must be submitted to regulatory agencies and understand how the valid sterilized state is maintained for each batch of single-use equipment. Particles from single use systems are generally controlled by in-line filters, but in final filling manifolds and aseptic systems without sterilizing filters, control of particles by the component and assembled system supplier, as well as implementation of flushing protocols where appropriate, must be considered. Another potential hurdle is understanding how to flush and perform integrity tests on in-line sterile filters prior to use when required. Lastly, as there is currently no test to ensure the leak or microbial barrier integrity of assembled single-use systems, components and assembly must be designed and controlled to minimize risk of leaks, and users must learn to trust these assurances in the absence of an on-site pre-use system integrity test correlated to microbial barrier performance. These are key areas where drug manufacturers must work with their supplier partners to design single-use systems and operating procedures that facilitate appropriate use and meet quality and safety requirements.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology Europe,
Click here