Freeze Drying: The Experts' View - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Freeze Drying: The Experts' View
Lyophilisation is often necessary for pharmaceutical products to improve stability or shelf-life. However, the process can present difficulties, particularly when scaling up from the laboratory to commercial production. We bring experts together to discuss best practices for developing a lyophilisation process, including quality by design (QbD) and design space.


Pharmaceutical Technology Europe


Page/Steiner: In the past, quality control techniques have tended to consider and record only binary attribute data such as pass or fail/good or bad. This approach is often rooted in old-fashioned concepts of quality control by inspection of the final product. But if only pass/fail attributes are recorded, a lot of useful information about the parameter being measured is lost. By determining and recording actual measurements it is possible to apply simple statistical process control techniques that can characterise the capability of the process and give warnings of unpredicted variability long before the process reaches a specification limit. For example, measurement of shrinkage within an acceptable range may be a useful indicator that the process is moving closer to a point where an unacceptable level of collapse may occur.

Pikal: I would like to think there are actual examples of industry implementing this advice and finding enthusiastic endorsement from the FDA. However, I have no direct knowledge of such examples. I do know, however, that many processes are run far from the optimal. If these were optimised, or at least improved using existing good freeze-drying practice, it would result in shorter processes with absolutely no increase in the risk of loss of product quality attributes. Indeed, in some cases, risk of loss of product quality attributes would be less in the redesigned process. In the formulation area, we know now how to formulate at least some proteins in such a way as to obtain far superior stability, with the amount of aggregation developing at room temperature storage for two years being far less than the aggregation that develops during two years at refrigerated storage. However, I have not seen any examples of a company reformulating to reduce the level of aggregates, as long as the "current formulation" meets the minimum product requirements.

Q. What analytical tools and techniques are essential for monitoring an enhanced approach to a lyophilised product?

Gieseler: An innovative PAT approach for freeze-drying would requires a PAT tool that allows the determination of a critical product parameter, such as product interface temperature and product resistance, for the batch as a whole (batch method). Ideally, the technology should be applicable in all scales of equipment. As a compromise, two different technologies (one applied in the laboratory, one in production) can be used, but they must provide a reliable and comparable measure of the same parameter without inherent scale factor.

In addition to the batch method, a complementary single-vial technology is also necessary that allows a noninvasive measurement (no contact with the product) of a critical process or product parameter in a single vial. The reason for such a combination is simple. A batch method draws a global, average picture of the product drying performance, while the single vial method determines specific product drying performance at a given spot in the freeze dryer. This would help to delineate drying heterogeneity between vials (edge effects, hot or cold spots on the freeze dryer shelf) which is always present in a freeze dryer in whatever scale and which might even change over time in a given unit.

Mayeresse: One of the current weak points for freeze-drying is the absence of direct measurement during the process. In the past, product probes where used to monitor the freeze-drying cycle, but they were not really reliable. There are many reasons for this, but mainly they are invasive because as you modify the freezing of that vial (metallic wire), it creates some void around the wire that allow vapour to escape more quickly. Today, automatic loading systems mean that these probes cannot be used at all anymore. However, new PAT tools are appearing on the market.


Steven Nail (Baxter Pharmaceutical Solutions)
Nail: As indicated above, we use TDLAS as the main PAT for design space development. It isn't essential, but it greatly decreases the time and effort required to construct a design space. We have found TDLAS to give accurate mass flow rates on laboratory scale equipment, usually within about 3% as compared with gravimetric determination. We do this by weighing the filled vials and stoppers before and after freeze-drying. However, TDLAS on production-scale equipment is considerably less accurate because of complexities in the dynamics of water vapour flow from the chamber to the condenser in large-scale freeze-drying equipment.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
70%
Breakthrough designations
4%
Protecting the supply chain
17%
Expedited reviews of drug submissions
2%
More stakeholder involvement
7%
View Results
Eric Langerr Outsourcing Outlook Eric LangerRelationship-building at Top of Mind for Clients
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerRisk Reduction Top Driver for Biopharmaceutical Raw Material Development
Jill Wechsler Regulatory Watch Jill Wechsler Changes and Challenges for Generic Drugs
Faiz Kermaini Industry Insider Faiz KermainiNo Signs of a Slowdown in Mergers
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology Europe,
Click here