Product Quality Lifecycle Implementation - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Product Quality Lifecycle Implementation
The authors provide an overview of the new ISPE Guide Series on Product Quality Lifecycle Implementation and how the guides can be used in a complementary way with existing guidance from FDA and the International Conference on Harmonization.


Pharmaceutical Technology
Volume 36, Issue 4, pp. 120-127

The concepts and examples developed reflect some of many optional approaches available to use QbD in pharmaceutical development and its effect on product realization.

Different activities in the product lifecycle are addressed in the series. Parts 1 and 2 focus on product realization using QbD. Other parts to be published address activities later in the product lifecycle, such as process performance and product quality monitoring system, change management, and selected elements of the process-validation lifecycle.

The series uses ICH terminology and the ICH guidelines Q8, Q9, and Q10, as well as Q11 on the development and manufacture of drug substances as a basis, together with other relevant ICH guidelines, questions and answer documents, and points-to-consider documents (8–11).

The need for guidance. Feedback from many sources indicates that practitioners want clear explanations and examples to demystify the concepts discussed in ICH Q8, Q9, and Q10, including "criticality" as applied to CQAs and CPPs, and "control strategy." Both terms have been used in the industry and "critical" has been used in many guidelines globally. "Design space" is a concept introduced and defined in ICH Q8 (R2).

ICH does not define "critical" even though the word is used extensively in its guidelines. ICH Q8 (R2) does offer definitions for CQA and CPP. Although the phrase "level of criticality" is not used and "critical" is not defined, there is general agreement within industry that assigning criticality to an attribute, parameter, or variable can be relatively subjective and dependent on context. Although a critical attribute or parameter is frequently interpreted as being high risk, what "high risk" means from a regulatory perspective remains debatable and inconsistent from company to company. Consequently, "criticality" is considered related to risk; therefore, this topic in the series addresses the application of quality risk management, based on ICH Q9, to the assignment of criticality.

"Control strategy" is defined in Q8 (R2) and Q10. How to establish a control strategy and its relationship to CGMPs and a pharmaceutical quality system is not discussed in sufficient detail for practitioners, particularly when some elements of a control strategy are derived from enhanced, QbD approaches, for example, when introducing real-time release testing (RTRT) or when PAT tools have been used. Suggestions are given to practitioners in Part 1 of the ISPE Guide and exemplification in great detail is provided in Part 2 to show how different elements of a control strategy combine to assure compliance with CQA acceptance criteria. In particular, Part 2 helps readers understand how:

  • different control strategy options can be developed
  • choices can be made
  • RTRT can be introduced
  • a control strategy can be implemented into manufacturing
  • PAT and RTRT can be applied in development and implemented into manufacturing
  • continual improvement options can be considered and progressed.

"Design" space is a relatively new topic and, in response to many questions, guidance is given on the many ways in which design space can be developed, communicated, and maintained as part of product realization. A number of specific examples are given to assist the practitioner in understanding and being able to develop design spaces.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
23%
Oversee medical treatment of patients in the US.
14%
Provide treatment for patients globally.
7%
All of the above.
47%
No government involvement in patient treatment or drug development.
9%
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here