Meeting Manufacturing Challenges Tied to Extended-Release Injectables - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Meeting Manufacturing Challenges Tied to Extended-Release Injectables
Industry experts working with extended-release injectables discuss challenges and solutions to formulating and manufacturing these complex products.

Pharmaceutical Technology
Volume 36, Issue 5, pp. 40-47


PharmTech: ER injectables cannot be terminally sterilized. Why is this the case, and what types of sterilization should be used instead?

Additional therapeutic areas for ER injectables
(Herbert, Alkermes): The challenge with terminal sterilization is that the physical and chemical stability of the materials used ER injectables—drug and polymers—do not generally withstand the temperatures required to effect terminal sterilization. Terminal sterilization utilizes high temperatures or radiation to make the product sterile. These conditions are likely to affect the API, creating some level of impurities. For polymer-based ER injectables, these high temperatures would melt the polymer, and radiation would typically decrease the molecular weight.

Aseptic processing is therefore used to produce sterile product in temperature- and radiation-sensitive products. Process equipment is steam sterilized-in-place, and ingredients entering the process pass through sterilizing filters that remove any organisms that might be in the ingredients. The majority of the processing takes place in closed equipment to prevent human contact. Media simulations are conducted to demonstrate that sterile product can be made in the process equipment.

(Thiel and Loffredo, Hospira): When terminal sterilization by autoclaving is not possible, the next default sterilization approach is sterile filtration followed by aseptic filling, as noted. However, some types of ER injectables are also unable to be filter-sterilized. For example, poly(lactic-co-glycolic acid) (PLGA) microparticle ER formulations cannot be filter-sterilized because the diameter of the PLGA microparticles exceeds the pore size of a sterilizing-grade filter (0.2 g). These microparticle formulations require specialized manufacturing with sterile compounding and processing.

Stickelmeyer (Lilly): It is correct that terminal sterilization by heat, chemical agents, or radiation is not recommended. Typically, ER formulations containing polymers may be susceptible to degradation at elevated temperatures due to the low glass-transition temperature of the polymers, thus making heat sterilization difficult. Ready-to-use suspension formulations may be able to withstand an autoclave cycle; however, heat treatments of aqueous suspensions may accelerate hydrolysis reactions, flocculation, or Ostwald ripening and, thus, in many cases are not suitable.

For chemical sterilization by gases, there are concerns about achieving adequate sterility and minimizing residual gas levels. Ionizing radiation may be feasible for solid particulate formulations (either gamma or electron beam) but may not be appropriate for biologics or for polymeric formulations because the radiation may affect polymer properties (e.g., cross-linking, degradation) that impact drug release.

Development of electron-beam sterilization cycles that expose the product to a higher energy—yet shorter processing times—may minimize the impact on release properties and long-term chemical and physical stability. Lower irradiation doses based on bioburden level may also provide required sterility assurance while reducing impact on chemical and physical stability.

Sterilizing filtration can be successfully applied to smaller particulate delivery systems but may not be feasible for larger particulate systems. In these cases, aseptic processing of sterile subsystems can be complex and increase risk.

Tipton (Evonik): The notion that ER injectables cannot be terminally sterilized is not universally true. If both the active and the excipients used in an ER formulation can withstand ionizing radiation independently—and combined in the dosage form—a terminal sterilization process can be developed and validated. However, many ER injectables are more complex and cannot handle radiation sterilization. This may be due to a complex active such as a protein that is susceptible to chain scission, oxidation degradation, disulfide bond rupture, or changes in conformation. Also, some of the formulation materials may be susceptible to radiation (i.e., they may undergo chain scission). In some cases, the formulation can be engineered to handle this decrease in polymer molecular weight. Finally, there may be complex interactions between formulation ingredients that can lead to instability.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
View Results
Eric Langerr Outsourcing Outlook Eric LangerTargeting Different Off-Shore Destinations
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAsymmetric Synthesis Continues to Advance
Jill Wechsler Regulatory Watch Jill Wechsler Data Integrity Key to GMP Compliance
Sean Milmo European Regulatory WatchSean MilmoExtending the Scope of Pharmacovigilance Comes at a Price
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Ebola Outbreak Raises Ethical Issues
Better Comms Means a Fitter Future for Pharma, Part 2: Realizing the Benefits of Unified Communications
Better Comms Means a Fitter Future for Pharma, Part 1: Challenges and Changes
Source: Pharmaceutical Technology,
Click here