Freeze-Drying Process Optimization for a Small Molecule - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Freeze-Drying Process Optimization for a Small Molecule
The authors evaluate the thermal properties of gentamicin sulfate as a small-molecule drug model in optimizing the freeze-drying cycle.

Pharmaceutical Technology
Volume 36, Issue 6, pp. 48-52

Compared with biopharmaceuticals, most freeze-dried small-molecule drugs are relatively inexpensive. To make their manufacture profitable, a high throughput without compromising the final quality is indispensable. The best approach to an optimized freeze-drying cycle is the reduction of primary drying time because this phase is commonly the most time-consuming part (1, 2). To follow this approach, an accurate and representative measurement of the critical formulation temperature (CFT) is required, which poses the upper boundary for the product temperature at the sublimation interface (Tp) during primary drying (2,3). With regard to process time and product-quality attributes, such as elegant-cake appearance, low residual moisture, quick and complete reconstitution, and drug activity, the product temperature over time profile during primary drying should be close to but below the CFT (2–4). In some cases, however, drying in the microcollapse regime is possible without severe structural loss as reported for protein formulations and could also be a promising approach to further process optimization for small molecule drugs (5–7). In this study, the thermal properties of gentamicin sulfate as a small-molecule model substance were characterized by means of freeze-dry microscopy (FDM) and differential scanning calorimetry (DSC) to determine the CFT at different concentrations and to investigate the potential for further freeze-drying cycle optimization.

Materials and methods

The pure gentamicin sulfate drug substance used for the thermal characterization was provided by Merck KGaA. Gentamicin sulfate solutions of 2, 5, 10, 20 and 30% (w/v) were prepared with deionized water.

DSC. The glass-transition temperature of the maximally freeze-concentrated solute (Tg) for the 5% (w/v) gentamicin sulfate solution was determined using a differential scanning calorimeter (DSC822e, Mettler Toledo). Data analysis was conducted with software (STARe Software V 9.01, Mettler Toledo), and values were provided as "onset" and "midpoint" (i.e., half height) of the transition. 30 L of sample solution were hermetically sealed in a 40-L aluminum pan, cooled down to –80 C at a cooling rate of 5 C/min, equilibrated for 10 min and reheated at 10, 3, and 1 C/min. For one sample measured with a heating rate of 3 C/min, an annealing step was implemented for 90 min at –20C. Nitrogen was used to purge the measuring cell throughout the experiment.

FDM. Collapse temperatures (Tc) for the 2, 5, 10, 20, and 30% (w/v) sample solutions were investigated directly after preparation and after one week of storage at room temperature. Validation of the temperature sensor and classification of collapse behavior were conducted according to the literature, and results are reported as an average of four measurements (8). The FDM equipment consisted of a microscope (Zeiss Imager.A1 microscope, Zeiss) with a polarizer, a lambda disk, and a freeze-drying stage (FDCS 196, Linkam Scientific Instruments). For each measurement, a sample volume of 2 L was pipetted onto a cover glass lying on the silver block oven of the stage. A smaller cover glass was placed on top of this drop. Constant layer thickness was assured by using custom-made metal pieces (i.e., 25 m) as spacers. To improve thermal contact between the bottom cover glass and the oven, a droplet of silicon oil was added. The sample droplet was frozen at a rate of 1.0 C/min and equilibrated at –45C for 10–13 min depending on the velocity of the sublimation interface. After 8 min of equilibration, the vacuum pump was switched on and subsequently sublimation could be observed. The sample was heated at a rate of 1.0 C/min following the equilibration step. The magnification used during the experiments was 200-fold. Pictures were captured by the software in 1-second intervals using a digital camera (Pixelink, 1.3 MP) and analyzed with the LinkSys 32 software (Linkam Scientific Instruments). The stage was purged with dry nitrogen during freezing and heating. Pressure was measured using a calibrated Pirani gauge (Linkam Scientific Instruments) The maximum achievable vacuum (< 0.03 mbar) was kept constant throughout the measurement.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What impact do mega-mergers of biopharmaceutical companies have on the development of new drugs?
Improves the quality and number of innovative drugs available to patients.
Restricts innovation and the development of new drugs.
Has no impact on drug development.
Do not know.
Improves the quality and number of innovative drugs available to patients.
Restricts innovation and the development of new drugs.
Has no impact on drug development.
Do not know.
Eric Langer Outsourcing Outlook Eric LangerOutsourcing No Longer Just for Cost-Cutting
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerSeeking Alternative Catalyst Solutions
Jill Wechsler Regulatory Watch Jill Wechsler Global Expansion Shapes Drug Oversight
Chris Burgess Statistical Solutions Chris BurgessIs a Sample Size of n=6 a Magic Number?
Sean Milmo European Regulatory WatchSean MilmoRegulating the Environmental Impact of Pharmaceuticals
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
USP Faces New Challenges
Report: Pfizer Makes $101 Billion Offer to AstraZeneca
Source: Pharmaceutical Technology,
Click here