Lyophilization: How to Meet Scale-Up Challenges Using QbD - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Lyophilization: How to Meet Scale-Up Challenges Using QbD
Experts share how to choose analytical tools and techniques when scaling up a lyophilization process.


Pharmaceutical Technology
Volume 36, Issue 7, pp. 74-75

SCALE UP

PharmTech: What are the key challenges and potential factors to consider when planning to scale up a lyophilization process?

Gieseler (University of ErlangenNuremberg): Examples of challenges include differences in environmental factors (e.g., non-cGMP versus sterile environment) and the different freezing behavior of the product solution in manufacturing. Other challenges are differences in equipment design and performance, such as emissivity of the surfaces, condenser performance, shelf cooling/control performance, vacuum control capabilities and choked-flow conditions, and a lack of appropriate tools to monitor the freeze-drying cycle.

However, the above-mentioned challenges can be overcome if operational qualification testing is performed on pilot–production equipment during a factory test or installation at the customer site. Performance testing can be conducted using a predefined freeze-dryer load (i.e., water or excipient solution) at various shelf temperature and pressureovertime profiles.

Mayeresse (GSK Biologicals): During the early development of a new product, the final facility is not necessarily defined and a product may also be transferred to another factory or CMO. For good scale up, it's important to know the final freeze dryers in which the product will be lyophilized. However, as this is not always possible, the best method is to define a design space that is large enough to transfer towards in the worst-case scenario, such as an in-house industrial freeze-dryer.

Nail (Baxter Pharmaceutical Solutions): Perhaps the biggest mistake development scientists make when developing freeze-drying cycle conditions is to conduct trial cycles using too few vials, in which most, or all, of the vials are in the "edge effect," where vials close to the edge dry at a faster rate than vials in the center of the array. We always use at least one full shelf of product for trial cycles. If there is not enough drug available for this, we use placebo for most of the vials, and put the vials containing active in the center of the vial array.

In addition to this, we consider differences in equipment capability between laboratory- and production-scale equipment, such as lowest attainable shelf temperature, fastest attainable shelf temperature, ramp rate under load, lowest attainable vacuum, and so forth.

Page/Steiner (GEA Pharma Systems): Science and risk management must form the basis of the scale-up process. The impact of changes in heat and mass transfer with scale and equipment design can be measured and predicted by applying basic process engineering techniques. If the process equipment is not properly characterized and understood, then scale-up will be a trial and error process. Where the equipment has been properly characterized, however, there is no reason why the scale effects should not be reasonably estimated and validated.

Pikal (University of Connecticut): There are differences in heat and mass transfer that may constitute scale-up problems. These issues need to be addressed by doing operational qualification testing under conditions of defined thermal and masstransfer load, perhaps using TDLAS, so that the capabilities of each dryer are known. Thus, a process can be designed with this constraint in mind. However, the major scale-up issue is the bias in ice nucleation temperature between freezing in a standard laboratory or pilot laboratory, and that characteristic of the Class 100 environment of a production facility. An easy way to circumvent this issue is to use controlled ice nucleation. In fact, even with the extensive knowledge we have now, good freeze-drying practice must include controlled ice nucleation.

PharmTech: What recent advances are being made in heat and mass transfer theory? How might breakthroughs in this area be applied to more effective scale-up using a QbD approach?

Mayeresse (GSK Biologicals): There are several good mathematical models that can be used, and some have been applied to freeze dryers to facilitate cycle development. One of the benefits of mathematical models is that they can support the thinking behind the physical aspect of the freeze-drying process. These models are a simplification of the reality and allow for better understanding of the underlying rules. In the future, more specific models based on other mathematical theories may arise that will offer more accurate insight into process development. Such models will surely improve the scale-up process in freeze drying.

Nail (Baxter Pharmaceutical Solutions): I don't think any real advances are being made in heat and mass transfer theory, because both disciplines are already very mature, but there are advances being made in application of this theory to freeze drying. In particular, the industry has realized the relative importance of thermal radiation as a heattransfer mechanism. This understanding could result in changes in equipment design and construction that take better advantage of thermal radiation, resulting in a more efficient process.

Pikal (University of Connecticut): I would maintain that the physics of heat and mass transfer, which is quite relevant to the design and control of primary drying, is relatively well understood. There may well be advances in applications, including using heat and mass transfer theory to assess in a quantitative fashion the impact of natural variation in key freeze-drying parameters (i.e., heat transfer coefficient, ice nucleation temperature, fill volume, and shelf temperature variation) on product quality (i.e., thermal history, collapse, and degradation). Indeed, some efforts in this area have started. Use of theory in scale-up is also underutilized, and application guidelines are needed.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
Which of the following business challenge poses the greatest threat to your company?
Building a sustainable pipeline of products
Attracting a skilled workforce
Obtaining/maintaining adequate financing
Regulatory compliance
Building a sustainable pipeline of products
30%
Attracting a skilled workforce
27%
Obtaining/maintaining adequate financing
14%
Regulatory compliance
30%
View Results
Eric Langer Outsourcing Outlook Eric LangerBiopharma Outsourcing Activities Update
Cynthia Challener, PhD Ingredients Insider Cynthia Challener, PhDAppropriate Process Design Critical for Commercial Manufacture of Highly Potent APIs
Jill Wechsler Regulatory Watch Jill Wechsler FDA and Manufacturers Seek a More Secure Drug Supply Chain
Sean Milmo European Regulatory WatcchSean MilmoQuality by Design?Bridging the Gap between Concept and Implementation
Medicare Payment Data Raises Questions About Drug Costs
FDA Wants You!
A New Strategy to Tackle Antibiotic Resistance
Drug-Diagnostic Development Stymied by Payer Concerns
Obama Administration Halts Attack on Medicare Drug Plans
Source: Pharmaceutical Technology,
Click here