Advancing Protein Crystallization: Microgravity Effects and Predictive Models - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Advancing Protein Crystallization: Microgravity Effects and Predictive Models
Recent research on elucidating the structure and sequence of proteins involves examining the effect of microgravity on protein crystallization and a computational model for protein elucidation.


Pharmaceutical Technology
Volume 36, Issue 10, pp. 64

Computational approaches for protein elucidation

Determining the structure and sequence of proteins is an important part of understanding the protein's biological properties and potential utility as a drug. Designing predetermined crystal structures, however, can be subtle given the complexity of proteins and the noncovalent interactions that govern crystallization (1). Researchers at the University of Pennsylvania recently reported on a computational approach for the design or proteins that self-assemble in three dimensions to yield macroscopic crystals (1).

"People have designed crystals out of smaller, much less complex molecules than proteins, but protein design is much more subtle," said Jeffrey G. Saven, associate professor of chemistry and biological and theoretical physical chemistry at the University of Pennsylvania, in a university press release. Saven conducted the research and recently reported on its results (1). Protein crystals are attractive as a nano-scale building material because their properties, particularly their exterior surfaces, are highly customizable, according to the university release.

The researchers targeted a crystal built using a relatively small protein containing a sequence of 26 amino acid positions. The researchers assigned specific amino acids to eight of the positions, but with 18 different types of amino acid to choose from for each of the remaining 18 slots, the algorithm addressed well more than 1022 potential combinations. The researchers accounted for other characteristics, such as the spacing between proteins and their orientation with respect to one another, increasing the variables being considered, according to the release.

"We worked on synthesizing both of those steps, doing the characterization of structure and the sequence at the same time," said Saven said in the university release. "As we move through this process, we eliminate things that will never work, such as proteins where atoms overlap in space or where amino acids don't fit into a given site. At the same time, we identify proteins that, as you vary the structure, are likely to yield a crystal."

Specifically, the research used a three-helix coiled-coil protein designed de novo to form a polar, layered, three-dimensional crystal having the P6 space group, which had a "honeycomb-like" structure and hexameric channels that spanned the crystal (1). The approach involved creating an ensemble of crystalline structures consistent with the targeted symmetry, characterizing this ensemble to identify "designable" structures from minima in the sequence–structure energy landscape and designing sequences for these structures, and experimentally characterizing candidate proteins. This approach to crystal design has potential applications to the de novo design of nanostructured materials and to the modification of natural proteins to facilitate X-ray crystallographic analysis.

The target crystal the researchers produced is a proof of concept. "There's still much we don't know about the interactions that govern crystallization," Saven said, in the university release. "With this technique, we can explore what those interactions are or how we might take an existing protein and engineer those interactions so we get much better structures."

Source

1. J.G. Saven et al, PNAS, 109 (19), 7304–7309 (2012).


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
23%
Oversee medical treatment of patients in the US.
14%
Provide treatment for patients globally.
7%
All of the above.
47%
No government involvement in patient treatment or drug development.
9%
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here