Determining Potency of Preclinical Dose Formulations - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Determining Potency of Preclinical Dose Formulations
Multiple factors arising during sample preparation can affect potency measurements.


Pharmaceutical Technology
Volume 36, Issue 10, pp. 132-134

Potency is a required measurement to determine the amount of active ingredient contained in a preclinical dose formulation. Assessing potency ensures that the test system receives the appropriate amount of active ingredient based on predetermined specifications. Potency determinations are made using a validated analytical method.

Preclinical dose formulation potency


Table I: Typical acceptance criteria for different formulation types.
Assessing the potency of preclinical dose formulation is completed by sampling the prepared formulation and assaying using a validated analytical method. Each dosing concentration is sampled and assayed; typically, assays are completed in duplicate. The observed concentration is compared to the theoretical amount and a percent of the theoretical concentration is determined. Typical acceptance criteria are listed in Table I.

In the event that a dose formulation does not meet the predetermined acceptance criteria, the result must be investigated for laboratory error. If an analytical error cannot be discovered, the effect on the study must be determined.

Each dosage concentration, including control samples, should be assessed for the first and last test batches of in vivo studies, at a minimum. Theoretical concentrations considering displacement factor and density will aid in achieving the targeted concentration, but measuring the actual result of a formulation will detect the true potency level of the drug in vehicle. Conversely, achieving the correct potency level is not always a simple addition of active ingredient to vehicle. The use of laboratory equipment, filtration, compound characteristics, storage, and chemical instability, including weighing and mixing procedures, are factors that can affect potency.

Mixing


Table II: Low recovery observed in a high-range quality control sample preparation.
Proper and appropriate mixing of a compound is essential to ensure adequate potency and homogeneity of the ingredient in the formulation. However, assumptions regarding solubility frequently exist when preparing a simple formulation. For example, a formulation prepared as a solution may appear soluble; however, results can dictate otherwise. Such an occurrence was observed in a high-range quality control sample preparation shown in Table II.

A laboratory investigation was conducted to identify an assignable cause for the low recoveries. A secondary dilution was prepared from the primary dilution as the method instructed. This time, however, recoveries were within specification of 100% 10. Although the solution appeared to be a true solution, it was clear that the formulation presented problematic mixing and/or dissolution. Furthermore, in a consecutive run, precipitate was later observed in the primary dilution, indicating the potential problem was dissolution of the analyte in the primary dilution. The analytical method was updated to include in the processing procedure that adequate mixing must be performed after the primary dilution to assure complete dissolution, because particles of the analyte may be present. Thereafter, all samples passed the solution criterion. In this instance, the formulation itself achieved the targeted potency; the problem arose during sample processing for analysis. Though the test system did receive the correct dosage potency, it is necessary to have the analytical data to support this conclusion.

Equally important when carrying out many mixing procedures, especially sonication, is allowing the formulation to cool before performing any additional aliquots. Neglecting this in itself can cause low recoveries when diluting. Special mixing considerations are also necessary when working with analytes that are not small molecules. Cautious inversion can effectively mix large molecules and proteins, without potential destructive effects observed from vigorous mixing procedures.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
FDASIA was signed into law two years ago. Where has the most progress been made in implementation?
Reducing drug shortages
Breakthrough designations
Protecting the supply chain
Expedited reviews of drug submissions
More stakeholder involvement
Reducing drug shortages
31%
Breakthrough designations
8%
Protecting the supply chain
42%
Expedited reviews of drug submissions
8%
More stakeholder involvement
12%
View Results
Jim Miller Outsourcing Outlook Jim Miller Health Systems Raise the Bar on Reimbursing New Drugs
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerThe Mainstreaming of Continuous Flow API Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler Industry Seeks Clearer Standards for Track and Trace
Siegfried Schmitt Ask the Expert Siegfried SchmittData Integrity
Sandoz Wins Biosimilar Filing Race
NIH Translational Research Partnership Yields Promising Therapy
Clusters set to benefit from improved funding climate but IP rights are even more critical
Supplier Audit Program Marks Progress
FDA, Drug Companies Struggle with Compassionate Use Requests
Source: Pharmaceutical Technology,
Click here