Analytical Applications - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Analytical Applications
Developing analytical methods and performing related testing is crucial for ensuring the quality of a pharmaceutical product. This analysis is applied to identify and characterize the active ingredient, the finished drug product, and impurities that may be present in the drug substance and finished drug product. In this technical forum, several industry experts offer case studies in pharmaceutical analysis.

Pharmaceutical Technology
pp. s32-s37, s41-43

Near-infrared spectroscopy

Robert Mattes, application scientist, FOSS NIRSystems. Stephen Hoag, professor, and Ravikanth Kona, PhD candidate, both in the Department of Pharmaceutical Sciences, University of Maryland

Top-spray granulation in a fluid-bed dryer is a common method of increasing particle size to increase flow characteristics and API content homogeneity. After spraying the liquid into the formulation and forming the granule, the product must be dried to the proper moisture level. If the granules are overdried or underdried, damage to the formulation may occur, thereby causing problems with subsequent processing and problems with product stability during storage (1). Samples are typically withdrawn from the fluid bed with a thief during processing and analyzed off line in a laboratory for moisture content. Commonly, there is a delay before analysis results are available to the operator, which results in processing decisions being made without optimal product-moisture information. Top-spray granulation end point is often based on time or product temperature and not actual moisture content.

Near-infrared spectroscopy (NIRS) is a rapid, nondestructive technique for in-process analysis of moisture in a manufacturing environment (2). Real-time measurements are made with no sample preparation, and data can be analyzed and stored automatically. NIRS fits in well with FDA's process analytical technology initiative (3). Using NIRS, the process can be monitored for low levels of residual moisture and other process constituents to yield better process control and end-point determination (4). Laboratory-scale fluid-bed dryers are often used in research at the university level and in process development to better understand formulation processing. This study shows the use of NIRS for monitoring residual moisture in laboratory-scale equipment.

Figure 1 (NIRS): The fluid-bed dryer with the near infrared probe inserted at a 45 angle. Also shown is the black purge line on the left and the sample thief on the right. (FIGURES 1–5 (NIRS) ARE COURTESY OF THE AUTHORS (MATTES ET AL.))
Methods and materials. The NIR instrument used to collect spectra was the ProFoss Diode Array (FOSS NIRSystems). Spectra were collected in the reflectance mode from 1100 nm to 1650 nm with 0.5-nm data intervals, and 32 scans were co-added to produce a single spectrum. A fluid-bed probe, specifically for fluid-bed dryer applications, was inserted into a fluid-air granulator at a 45 angle to the central axis of the product container as seen in Figure 1 (NIRS). The collection "spoon" and purge vents are located on the probe tip (see Figure 2 [NIRS]). After each NIR spectrum was collected, the software sent a "data complete" signal that energized an air purge exiting through the ports in the probe, thereby clearing the "spoon" for a new sample. The insert in Figure 2 (NIRS) shows the probe with the sample collected.

Figure 2 (NIRS): The specially designed spoon probe with purge ports. The insert shows sample collected on the probe. (FIGURES 1–5 (NIRS) ARE COURTESY OF THE AUTHORS (MATTES ET AL.))
A charge of lactose monohydrate (Pharmatose 110M, DMV-Fonterra Excipients) and microcrystalline cellulose (Avicel PH 102, FMC) was prepared and loaded into the product container. The product was fluidized for 5 min to blend and dry the mixture to homogeneity. An aqueous solution of 10% polyvinyl pyrrolidone (Kollidon K30, BASF) was added by top spray. NIR spectra were collected every 50 s during the blending operation. Samples for loss on drying (LOD) analysis were withdrawn with the sample thief at approximately 5-min intervals to be later correlated with spectra acquired at the same time.

Figure 3 (NIRS): Second derivative mathematically treated dryer spectra. (FIGURES 1–5 (NIRS) ARE COURTESY OF THE AUTHORS (MATTES ET AL.))
Results and discussion. Figure 3 (NIRS) shows the second derivative of the sample spectra. The second-derivative mathematical treatment is commonly used in NIR spectroscopy to minimize baseline offset caused by scattering and to enhance absorbance peaks. Due to the second derivative treatment, the moisture increases downward in this region. Water absorbs strongly in the NIR between 1400 and 1450 nm as evidenced by the peaks in that region.

Figure 4 (NIRS): Scatter plot of the near infrared (NIR) predicted values versus the loss-on-drying (LOD) values. (FIGURES 1–5 (NIRS) ARE COURTESY OF THE AUTHORS (MATTES ET AL.))
A two-factor partial-least-squares regression model was developed with spectra from a calibration run and LOD reference values. The second derivative intensity over the range 1100–1650 nm was used to develop a prediction model with an R2 value of 0.9519 and a standard error of calibration of 0.7358%. Figure 4 (NIRS) shows a calibration plot of NIR predicted versus LOD % moisture.

Figure 5 (NIRS): Trend plot of moisture on subsequent run. (FIGURES 1–5 (NIRS) ARE COURTESY OF THE AUTHORS (MATTES ET AL.))
Figure 5 (NIRS) is a typical analysis output trend chart showing the moisture decrease during the drying cycle. The operator is aided with real-time graphical output such as this in making the decision to end the drying operation before the product is damaged or degraded. The delay caused by waiting for laboratory results before the product can be released for subsequent processing can be minimized or eliminated. Output from the NIR computer is used by the fluid-bed dryer's programmable logic controller for closed-loop process-control decisions. The correct NIR probe must be placed in the product container in a manner that provides sufficient sample contact with the probe-tip window. Correct probe design and proper placement in process equipment is of high importance (4).

References (NIRS)

1. A.G. Rogers, "Granulation and Drying Principles," Hands-on Postgraduate Course in Tablet Technology, Univ. Tennessee (Memphis, 2003).

2. R.A. Mattes et al., "Process Analytical Technology" supplement to Pharm. Technol. 28 (9), s17–s20 (2004).

3. A.M. Afnan, J. Proc. Anal. Technol. 1 (1), 8–9 (2004).

4. R.A. Mattes, D.E. Root, and A.P. Birkmire, "The Role of Spectroscopy in Process Analytical Technologies" special issue to Spectrosc. 20 (1), 14–17 (2005).


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here