Aseptic Processing: A Primer - Pharmaceutical Technology

Latest Issue
PharmTech

Latest Issue
PharmTech Europe

Aseptic Processing: A Primer
PharmTech speaks to Ray O'Connor from the National Institute for Bioprocessing Research and Training (NIBRT) for an overview of aseptic processing.

Pharmaceutical Technology Europe


Product contamination

Q PTE: What types of product contamination can occur during bioprocessing?

O'Connor: Contamination in the biopharmaceutical industry can have serious health effects on the patient, so it is crucial to monitor and avoid. The different types of contamination one might find include bacteria, which could cause an infection in someone who is already ill, thus making the actual condition worse; chemicals, which could cause poisoning or other effects on the patient; and physical contamination, which could be particulates that can cause serious problems, such as cuts, blockage or even death in the patient. If work is being done in a multiproduct facility, cross-contamination from one product to another can occur as well.

With regard to bacteria, viable particles are of particular concern in the biopharmaceutical industry. If they enter a product, they will multiply rapidly (e.g., they can double in under 20 min in the right conditions). If bacteria get into the system, they can actually overpower the product being made and you may end up losing the product.

Most bacterial contamination comes from human beings. Hence, it's vitally important that when staff walk into a cleanroom or work in a cleanroom, they must be appropriately garbed to ensure minimal exposure of skin to the environment.

Overall, there are five main routes of entry into the product of any type of contaminant. First is raw materials. All the raw materials used in the manufacturing of the product are potential sources of contamination. Quality systems associated with the supply and release of raw materials into the manufacturing processes are critical. A second source is the plant. Poorly sanitised equipment can lead to contamination. A third source is the environment. The cleanroom design, as described below, must be executed properly. Fourth is movement of personnel. It's important that people move in a controlled and deliberate fashion in a cleanroom. Erratic behaviour can generate particles. A fifth source is gowning. People represent 80–90% of common contamination sources. Proper gowning behaviour and training in aseptic technique and aseptic processing is vital.


ADVERTISEMENT

blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
|Monthly
| Weekly

Survey
What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
26%
Oversee medical treatment of patients in the US.
13%
Provide treatment for patients globally.
11%
All of the above.
39%
No government involvement in patient treatment or drug development.
11%
Jim Miller Outsourcing Outlook Jim MillerCMO Industry Thins Out
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerFluorination Remains Key Challenge in API Synthesis
Marilyn E. Morris Guest EditorialMarilyn E. MorrisBolstering Graduate Education and Research Programs
Jill Wechsler Regulatory Watch Jill Wechsler Biopharma Manufacturers Respond to Ebola Crisis
Sean Milmo European Regulatory WatchSean MilmoHarmonizing Marketing Approval of Generic Drugs in Europe
FDA Reorganization to Promote Drug Quality
FDA Readies Quality Metrics Measures
New FDA Team to Spur Modern Drug Manufacturing
From Generics to Supergenerics
CMOs and the Track-and-Trace Race: Are You Engaged Yet?
Source: Pharmaceutical Technology Europe,
Click here