Report from Brazil - Pharmaceutical Technology

Latest Issue

Latest Issue
PharmTech Europe

Report from Brazil
Brazil's major vaccine producer innovates with stem-cell research.

Pharmaceutical Technology
Volume 37, Issue 3, pp. 34-36

Implications for the pharmaceutical sector

Private pharmaceutical companies in Brazil acknowledge the importance of stem-cell research. "Butantan and the national pharmaceutical industry are major partners and the institute is willing to develop research studies together with the private sector," says Henrique Uchió Tada, executive technical director for the National Pharmaceutical Laboratories Association (Alanac).

According to Tada, the various potential benefits and applications of the stem-cell project include, among others, treatments for diabetes, heart illnesses, liver problems, multiple sclerosis, brain lesions, Parkinson disease, inflammatory diseases, and the recovery of human skin and organs. "However, the development of related pharma products is still a little far away for the national pharmaceutical industry," he adds. Tada explains that stem-cell studies conducted by national pharmaceutical laboratories focus on a type of treatment that is not considered traditional. He says that treatment is obtained through the retrieval of stem cells from the individual's body and not through a synthetic drug applied for treating an entire population with the exact same illness or disease.

Several bioethics experts in Brazil believe that there may be a gap between the pharmaceutical industry and stem-cell treatments. The future might not require the use of drugs as we know them, they say. For example, patients would be able to use their own cells to cure diseases, and as a result, the pharmaceutical industry would be affected because of profit loss from the steep drop in sales. Tada, however, believes that pharmaceutical firms could benefit from stem-cell advances if they develop a method that makes use of stem cells in treatment procedures.

According to both Kerkis and Lizier, the pharmaceutical industry has shown great interest in stem-cell research because of its potential as "biotools" for developing and testing new products. "The development of new drugs through the study of stem cells could become a reality by conjoining findings from pharmacology and cellular biology studies as the variety of substances produced by cultured stem cells could open new doors for pharmacology in general," says Kerkis, whose statement was supported by Lizier.

Butantan's stem-cell research

Embryonic stem cells, obtained by a special technique developed by Butantan researchers, are already being tested in humans. According to the institute, results from these clinical studies, which involve reconstruction of the tissue that covers the human eye cornea for example, are expected to be reported during the second half of 2013.

Butantan's biggest finding is that, through the method developed, it is possible to obtain sufficient quantities of cells to be applied in humans. According to Lizier, one of the advantages of working with stem cells from milk teeth is that these teeth are biological materials that are generally discarded and children have an average of 20 milk teeth that are changed during their lifetime. Moreover, the extraction of the internal material from the teeth is simple and not as painful when compared with other techniques.

With the method developed at Butantan, it is possible to obtain cells that are considered immature compared with other populations of adult stem cells found in other tissues. According to Lizier, the technique uses cells that are similar to embryonic cells, but without the bioethics issues involved or the possibilities of inducing tumor growth during treatments. Using Butantan's technology, researchers can retrieve approximately 100 billion cells from a small fragment of dental pulp. "The figure is big enough for treating up to 100 patients," says Lizier.

Butantan has scientific proof that stem cells from milk teeth could play an important and safe role in treatments involving bone, cartilage, muscle, and neural tissue regeneration as well as in therapies for immune and metabolic disorders and dentistry. As the research develops, other applications of the institute's technology could prove useful in the near future.

—Hellen Berger is a business writer based in São Paulo, Brazil.


blog comments powered by Disqus
LCGC E-mail Newsletters

Subscribe: Click to learn more about the newsletter
| Weekly
| Monthly
| Weekly

What role should the US government play in the current Ebola outbreak?
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Finance development of drugs to treat/prevent disease.
Oversee medical treatment of patients in the US.
Provide treatment for patients globally.
All of the above.
No government involvement in patient treatment or drug development.
Jim Miller Outsourcing Outlook Jim MillerOutside Looking In
Cynthia Challener, PhD Ingredients Insider Cynthia ChallenerAdvances in Large-Scale Heterocyclic Synthesis
Jill Wechsler Regulatory Watch Jill Wechsler New Era for Generic Drugs
Sean Milmo European Regulatory WatchSean MilmoTackling Drug Shortages
New Congress to Tackle Health Reform, Biomedical Innovation, Tax Policy
Combination Products Challenge Biopharma Manufacturers
Seven Steps to Solving Tabletting and Tooling ProblemsStep 1: Clean
Legislators Urge Added Incentives for Ebola Drug Development
FDA Reorganization to Promote Drug Quality
Source: Pharmaceutical Technology,
Click here